RT-flex50-D
Marine Installation Manual
Issue December 2010 Turbocharger on exhaust side or on aft end (TC exh. side or TC aft end)
Wärtsilä Switzerland Ltd
PO Box 414 CH-8401 Winterthur http://www.wartsila.com Switzerland
2010 Wärtsilä Switzerland Ltd, Printed in Switzerland
This issue of the Marine Installation Manual (MIM) provides data for the following two-stroke marine diesel engines:
–
Wärtsilä 5–8RT-flex50-D TC exh. side
–
Wärtsilä 5–7RT-flex50-D TC aft end
Wärtsilä RT-flex50-D engines with the following MCR:
–
Power per cylinder 1745 kW 2375 bhp
–
Speed 124 rpm
–
Mean effective pressure at R1 21.0 bar
–
All data are related to engines compliant with IMO-2000 regulations Tier II.
–
The engine performance data (rating R1) refer to winGTD version 3.0.1
–
The engine performance data (BSFC, BSEF and tEaT) and other data can be obtained from the winGTD-program, which can be downloaded from our Licensee Portal.
–
This Marine Installation Manual is complete within itself, no additional documentation is necessary.
26.14.40 – Issue XII.10 – Rev. 0 Wärtsilä Switzerland Ltd
Marine Installation Manual
List of contents
RT-flex50-D
A
Introduction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–1
A1
Primary engine data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A–2
A2
Tuning options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A–3
A2.1
Delta Tuning
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A–3
A2.2
Low-Load Tuning (LLT)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A–3
A2.3
Further aspects of engine tuning options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A–4
B
Engine description
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–1
B1
Engine description
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B–1
B2
Engine numbering and designation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B–4
C
General engine data
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–1
C1
Engine rating field and load range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–1
C1.1
Rating field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–1
C1.1.1
Rating points R1, R2, R3 and R4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–2
C1.1.2
Influence of propeller revolutions on the power requirement
. . . . . . . . . . . . . . . . . . .
C–2
C1.2
Load range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–2
C1.2.1
Propeller curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–3
C1.2.2
Sea trial power
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–3
C1.2.3
Sea margin (SM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–3
C1.2.4
Light running margin (LR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–4
C1.2.5
Engine margin (EM) or operational margin (OM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–5
C1.2.5.1
Continuous service rating (CSR=NOR=NCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–5
C1.2.5.2
Contract maximum continuous rating (CMCR = Rx)
. . . . . . . . . . . . . . . . . . . . . . . . . .
C–5
C1.2.6
Load range limits
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–5
C1.2.7
Load range with main-engine driven generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–7
C1.2.8
Load range limit with controllable pitch propeller
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–8
C1.2.8.1
Requirements for control system with CPP
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–9
C2
Engine data
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–10
C2.1
Reference conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–10
C2.2
Design conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–10
C2.3
Ancillary system design parameters
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–10
C2.4
Engine performance data
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–10
C3
Turbocharger and scavenge air cooler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–11
C3.1
Turbocharger and scavenge air cooler selection
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–12
Wärtsilä Switzerland Ltd a 26.14.40 – Issue XII.10 – Rev. 0
List of contents Marine Installation Manual RT-flex50-D
C4
Auxiliary blower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–17
C5
Electrical power requirement in [kW] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–17
C6
Pressure and temperature ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–17
C7
General Technical Data – winGTD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–19
C7.1
Availability of winGTD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–19
C7.1.1
Download from Licensee Portal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–19
C7.2
Using winGTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–19
C7.2.1
Start
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–19
C7.2.2
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–19
C7.2.3
Output results
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–20
C7.2.4
Service conditions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–20
C7.2.5
Saving a project
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–20
D
Engine dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–1
D1
Vibration aspects
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–1
D1.1
External forces and moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–1
D1.1.1
Balancing free first order moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–2
D1.1.2
Balancing free second order moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–2
D1.1.3
Power related unbalance (PRU)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–3
D1.2
Lateral engine vibration (rocking) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–4
D1.2.1
Reduction of lateral vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–5
D1.2.1.1
Engine stays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–5
D1.2.1.2
Electrically driven compensator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–5
D1.3
Longitudinal engine vibration (pitching)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–6
D1.4
Torsional vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–6
D1.4.1
Reduction of torsional vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–7
D1.5
Axial vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–8
D1.5.1
Reduction of axial vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–8
D1.6
Hull vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–9
D1.7
External forces and moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–10
D1.8
Summary of countermeasures for dynamic effects . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–11
D2
System dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–12
D3
Order forms for vibration calculations and simulation
. . . . . . . . . . . . . . . . . . . . . . . . .
D–12
D3.1
Marine installation Torsional Vibration Calculation
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–13
D3.2
Testbed installation Torsional Vibration Calculation
. . . . . . . . . . . . . . . . . . . . . . . . . . .
D–14
D3.3
Marine installation Coupled Axial Vibration Calculation . . . . . . . . . . . . . . . . . . . . . . . .
D–15
D3.4
Marine installation Bending Vibration & Alignment Calculation
. . . . . . . . . . . . . . . . .
D–16
D3.5
Required information of OD-shafts for TVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–17
26.14.40 – Issue XII.10 – Rev. 0 b Wärtsilä Switzerland Ltd
Marine Installation Manual
List of contents
RT-flex50-D
E Auxiliary power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–1
E1 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–1
E1.1 System description and layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–2
E2 Waste heat recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–2
E3 Power take off (PTO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–2
E3.1 Arrangements of PTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–2
E3.2 PTO power and speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–2
F Ancillary systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–1
F1 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–1
F1.1 Part-load data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–1
F1.2 Engine system data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–1
F1.2.1 Engine system data for central fresh water cooling system (single-stage)
at nominal maximum continuous rating (R1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–2
F1.2.2 Questionnaire for engine data (winGTD, see section C7) . . . . . . . . . . . . . . . . . . . . . . F–6
F2 Piping systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–7
F2.1 Cooling water and pre-heating systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–7
F2.1.1 Central fresh water cooling system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–7
F2.1.1.1 Central freshwater cooling system components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–12
F2.1.2 General recommendations for design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–17
F2.1.3 Cooling water treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–17
F2.1.4 Freshwater generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–18
F2.1.5 Pre-heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–20
F2.2 Lubricating oil systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–21
F2.2.1 Lubricating oil systems for turbochargers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–21
F2.2.2 Main lubricating oil system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–21
F2.2.3 Main lubricating oil system components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–27
F2.2.4 Cylinder lubricating oil system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–28
F2.2.5 Lubricating oil maintenance and treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–28
F2.2.5.1 Lubricating oil separator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–28
F2.2.6 Lubricating oil requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–28
F2.2.7 List of lubricating oils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–31
F2.2.8 Lubricating oil drain tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–33
F2.2.9 Flushing the external lubricating oil system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–40
F2.2.9.1 Preparation before flushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–41
F2.2.9.2 Flushing external lubricating oil system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–41
F2.2.9.3 Flushing within the engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–42
F2.2.9.4 Commissioning of lubricating oil system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–42
F2.2.9.5 Lubricating oil cleanliness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–42
F2.2.9.6 Cylinder oil supply system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–43
Wärtsilä Switzerland Ltd c 26.14.40 – Issue XII.10 – Rev. 0
List of contents Marine Installation Manual RT-flex50-D
F2.3
Fuel oil systems
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–44
F2.3.1
Fuel oil requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–44
F2.3.2
Fuel oil treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–48
F2.3.2.1
Settling tanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–50
F2.3.2.2
Service tanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–50
F2.3.2.3
Centrifugal separators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–50
F2.3.3
Pressurized fuel oil system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–51
F2.3.4
Fuel oil system on the engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–53
F2.3.5
Heavy fuel oil system components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–55
F2.3.5.1
Fuel oil filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–58
F2.3.6
Flushing the external fuel oil system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–60
F2.3.6.1
Preparation before flushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–61
F2.3.6.2
Flushing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–61
F2.4
Starting and control air systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–62
F2.4.1
System layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–62
F2.4.2
Capacities of air compressor and receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–62
F2.4.3
Starting and control air system specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–64
F2.4.3.1
Control air system supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–64
F2.4.4
General service and working air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–64
F2.5
Leakage collection system and washing devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–65
F2.6
Exhaust gas system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–69
F2.7
Air vents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–71
F2.8
Engine-room ventilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–72
F3
Ambient temperature consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–73
F3.1
Engine air inlet – Operating temperatures from 45°C to 5°C . . . . . . . . . . . . . . . . . . .
F–73
F3.1.1
Scavenge air system – arctic conditions at operating temperatures below 5°C . . .
F–73
F3.2
Air filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–75
F4
Pipe size and flow details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–77
F4.1
Pipe velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–77
F4.2
Piping symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–78
F5
Engine pipe connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–81
F5.1
RT-flex50-D TC exh. side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–81
F5.2
RT-flex50-D TC aft end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–87
G
Automation and controls
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–1
G1
Introduction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–1
G1.1
DENIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–3
G1.2
WECS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–3
G1.3
MAPEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–3
26.14.40 – Issue XII.10 – Rev. 0 d Wärtsilä Switzerland Ltd
Marine Installation Manual
List of contents
RT-flex50-D
G2
DENIS-9520
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–3
G2.1
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–3
G2.2
Propulsion control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–4
G2.2.1
Approved propulsion control systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–5
G2.2.2
Functions of the propulsion control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–7
G2.2.3
Recommended manoeuvring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–8
G2.3
Interface to alarm and monitoring systems
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–9
G2.3.1
General layout – Operator interface OPI
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–9
G2.3.2
Alarm sensors and safety functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–11
G3
WECS-9520 – RT-flex engine control system
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–15
G3.1
WECS-9520 – System layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–15
G3.2
WECS-9520 – External 230 VAC power supply
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–15
G3.3
Online spare module
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–15
G3.4
Communication to external systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–15
G3.5
Cabling notes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–17
G4
MAPEX Engine Fitness Family
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–18
G4.1
Mapex-PR (Piston-running Reliability)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–19
H
General installation aspects
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . H–1
H1
Introduction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–1
H2
Dimensions and masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–2
H2.1
Engine
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–2
H2.2
Dimensions and masses of main components
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–3
H2.3
Thermal expansion at the turbocharger expansion joint
. . . . . . . . . . . . . . . . . . . . . . .
H–4
H2.4
Contents of fluid in the engine
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–5
H2.5
Crane requirements and dismantling heights
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–5
H2.5.1
Crane requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–5
H2.5.2
Piston dismantling heights
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–5
H2.5.3
Dismantling of scavenge air cooler
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–7
H3
Outline drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–8
H3.1
RT-flex50-D TC exh. side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–8
H3.2
RT-flex50-D TC aft end
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–12
H4
Platform arrangements
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–14
H4.1
RT-flex50-D TC exh. side
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–14
H4.2
RT-flex50-D TC aft end
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–17
Wärtsilä Switzerland Ltd e 26.14.40 – Issue XII.10 – Rev. 0
List of contents Marine Installation Manual RT-flex50-D
H5
Engine seating with epoxy resin chocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–18
H5.1
Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–18
H5.2
Drilling of the holes in the tank top plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–18
H5.3
Chock thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–18
H5.4
Pouring of the epoxy resin chocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–19
H5.4.1
Conditions before pouring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–19
H5.4.2
Pouring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–19
H5.4.3
Tightening the holding-down studs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–19
H5.5
Engine foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–20
H5.6
Engine holding-down studs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–21
H5.6.1
Engine seating side stoppers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–25
H5.6.2
Chocking and drilling plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–29
H5.7
Engine alignment tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–33
H6
Engine coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–36
H6.1
Fitting coupling bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–36
H7
Engine earthing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–40
H7.1
Preventive action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–40
H7.2
Earthing slip-rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–41
H7.2.1
Main shaft earthing system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–41
H8
Engine stays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–43
H8.1
Stay arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–43
H8.1.1
Installation of lateral stays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–43
H8.1.2
Installation of longitudinal stays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–43
H9
Fire protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–47
H9.1
Extinguishing agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–47
I
Engine emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I–1
I1
Exhaust gas emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I–1
I1.1
IMO-2000 regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I–1
I1.1.1
Establishment of emission limits for ships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I–1
I1.1.2
Regulation regarding NOx emissions of diesel engines . . . . . . . . . . . . . . . . . . . . . . .
I–1
I1.2
Measures for compliance with the IMO regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I–2
I1.2.1
Low NOx Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I–2
26.14.40 – Issue XII.10 – Rev. 0 f Wärtsilä Switzerland Ltd
Marine Installation Manual
List of contents
RT-flex50-D
I2
Engine noise
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I–3
I2.1
Engine surface sound pressure level
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I–3
I2.2
Engine exhaust sound pressure level at funnel top
. . . . . . . . . . . . . . . . . . . . . . . . . . .
I–4
I2.3
Engine structure borne noise
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I–5
J
Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J–1
J1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J–1
J2
Standard tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J–2
J3
Recommended special tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J–3
J4
Special tools, obtainable on loan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J–4
J5
Storage proposal
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J–5
J5.1
Tool panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J–6
K
Spare parts
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K–1
K1
Introduction
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–1
K2
List of spare parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–1
K3
Illustrations of spare parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–10
K4
Storage on board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–25
K4.1
Protection against corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–25
K4.2
Storage and security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–25
K4.2.1
Turbocharger spare parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–25
K4.2.2
Secured spare parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–26
L
Engine dispatch and installation
. . . . . . . . . . . . . . . . . . . . . . . . .
L–1
L1
Dismantling pattern
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L–1
L1.1
Treatment against corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L–1
L1.2
Engine dismantling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L–2
L1.3
Engine dispatch
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L–3
L1.3.1
Lifting an engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L–3
L1.3.2
Engine sub-assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L–4
Wärtsilä Switzerland Ltd g 26.14.40 – Issue XII.10 – Rev. 0
List of contents Marine Installation Manual RT-flex50-D
L2
Engine installation on board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L–5
L2.1
Removing rust preventing oils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L–5
L2.2
Installation and assembly of sub-assemblies
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L–5
L2.3
Installing a complete engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L–6
L2.4
Installing an engine from assembled sub-assemblies . . . . . . . . . . . . . . . . . . . . . . . . .
L–6
L2.5
Engine installation with ship on slipway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L–6
L3
Shafting alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L–7
L4
Official shop trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L–8
M
Appendix
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M–1
M1
SI dimensions for internal combustion engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M–1
M2
Approximate conversion factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M–2
M3
Reference to other Wärtsilä Ltd publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M–3
26.14.40 – Issue XII.10 – Rev. 0 h Wärtsilä Switzerland Ltd
Marine Installation Manual
List of figures
RT-flex50-D
Fig. A1
Power/speed range of all IMO-2000 regulation compatible RTA
and RT-flex engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A–1
Fig. A2
Schematic functional principle of Low-Load Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . .
A–4
Fig. A3
Rating fields for Delta Tuning and Low-Load Tuning . . . . . . . . . . . . . . . . . . . . . . . . . .
A–5
Fig. A4
BSFC deviation for Delta Tuning and Low-Load Tuning compared with
Standard Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A–5
Fig. B1
Comparison of Wärtsilä RTA engines and RT-flex engines . . . . . . . . . . . . . . . . . . . . .
B–1
Fig. B2
Cross section of Wärtsilä RT-flex engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B–2
Fig. B3
Wärtsilä RT-flex system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B–3
Fig. B4
Engine numbering and designation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B–4
Fig. C1
Rating field of the Wärtsilä RT-flex50-D engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–1
Fig. C2
Load range limits of an engine corresponding to a specific rating point Rx . . . . . . .
C–3
Fig. C3
Load diagram for a specific engine showing the corresponding power
and speed margins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–4
Fig. C4
Load range limits, with the load diagram of an engine corresponding to
a specific rating point Rx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–6
Fig. C5
Load range diagram for an engine equipped with a main-engine driven generator,
whether it is a shaft generator or a PTO-driven generator . . . . . . . . . . . . . . . . . . . . .
C–7
Fig. C6
Load range diagram for CPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–8
Fig. C7
Scavenge air cooler details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–11
Fig. C8
Turbocharger and scavenge air cooler selection
(1 x ABB A100-L turbocharger) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–12
Fig. C9
Turbocharger and scavenge air cooler selection
(2 x ABB A100-L turbochargers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–13
Fig. C10
Turbocharger and scavenge air cooler selection
(1 x MHI MET MB turbocharger) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–14
Fig. C11
Turbocharger and scavenge air cooler selection
(2 x MHI MET MB turbochargers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–15
Fig. C12
Turbocharger and scavenge air cooler selection for
Wärtsilä 5RT-flex50-D TC aft end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–16
Fig. C13
winGTD: Selection of engine window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–19
Fig. C14
winGTD: Main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–20
Fig. C15
winGTD: General technical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–20
Fig. C16
winGTD: Two-stroke engine propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C–20
Fig. D1
External forces and moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–1
Fig. D2
Locating electrically driven compensator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–2
Fig. D3
Free external mass moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–3
Fig. D4
External forces and moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–4
Fig. D5
General arrangement of lateral stays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–5
Fig. D6
General arrangement of friction stays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–5
Fig. D7
Vibration damper (Viscous type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–7
Fig. D8
Vibration damper (Geislinger type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–7
Fig. D9
Axial damper (detuner) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–8
Fig. D10
OD-shafts for TVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D–17
Fig. E1
Heat recovery, typical system layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
E–1
Wärtsilä Switzerland Ltd i 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
List of figures
Fig. E2
Tunnel PTO gear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
E–2
Fig. F1
Central fresh water cooling system with single-stage SAC
and integrated HT circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–2
Fig. F2
Central fresh water cooling system with single-stage SAC
and separate HT circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–4
Fig. F3
Central fresh water cooling system with single-stage scavenge air cooler
and integrated HT circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–8
Fig. F4
Central fresh water cooling system with single-stage scavenge air cooler
and separate HT circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–10
Fig. F5
Central cooling water system expansion tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–14
Fig. F6
Central cooling water system expansion tank (HT circuit) . . . . . . . . . . . . . . . . . . . . . .
F–15
Fig. F7
Central cooling water system expansion tank (LT circuit) . . . . . . . . . . . . . . . . . . . . . .
F–16
Fig. F8
Fresh water generator installation alternative ‘A’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–18
Fig. F9
Fresh water generator installation alternative ‘B’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–19
Fig. F10
Pre-heating power requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–21
Fig. F11
Connections and specifications for the engine lubrication . . . . . . . . . . . . . . . . . . . . . .
F–22
Fig. F12
Lubricating oil system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–23
Fig. F13
Lubricating oil system for 1 x ABB A170/175 turbocharger . . . . . . . . . . . . . . . . . . . . .
F–25
Fig. F14
Lubricating oil system on the engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–26
Fig. F15
Lubricating oil treatment and transfer system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–29
Fig. F16
Servo oil filter back flushing treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–30
Fig. F17
Arrangement of vertical lubricating oil drains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–33
Fig. F18
Vertical drain connection details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–35
Fig. F19
Layout of vertical oil drains for 5RT-flex50-D and 6RT-flex50-D . . . . . . . . . . . . . . . . .
F–36
Fig. F20
Layout of vertical oil drains for 7RT-flex50-D and 8RT-flex50-D . . . . . . . . . . . . . . . . .
F–37
Fig. F21
Lubricating oil drain tank, vertical oil drains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–38
Fig. F22
Dimensioning guide-lines and filling process of the lubricating oil drain tank . . . . . .
F–39
Fig. F23
Flushing the lubricating oil system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–40
Fig. F24
Typical viscosity / temperature diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–47
Fig. F25
Heavy fuel oil treatment and tank system layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–48
Fig. F26
Pressurized fuel oil system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–52
Fig. F27
Fuel oil system on the engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–54
Fig. F28
Fuel oil system mixing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–57
Fig. F29
Filter arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–58
Fig. F30
Fuel oil system flushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–60
Fig. F31
Starting and control air system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–63
Fig. F32
Leakage collection and washing system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–66
Fig. F33
Sludge oil trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–67
Fig. F34
Arrangement of automatic water drain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–68
Fig. F35
Determination of exhaust pipe diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–69
Fig. F36
Estimation of exhaust gas density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–70
Fig. F37
Estimation of exhaust pipe diameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–70
Fig. F38
Direct suction of combustion air – main and auxiliary engine . . . . . . . . . . . . . . . . . . .
F–72
Fig. F39
Scavenge air system for arctic conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–73
Fig. F40
Blow-off effect under arctic conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–74
26.14.40 – Issue XII.10 – Rev. 0 j Wärtsilä Switzerland Ltd
Marine Installation Manual
List of figures
RT-flex50-D
Fig. F41
Air filter size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–76
Fig. F42
Piping symbols 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–78
Fig. F43
Piping symbols 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–79
Fig. F44
Piping symbols 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–80
Fig. F45
Pipe connection plan for Wärtsilä 6RT-flex50-D with ABB A175-L
(TC exh. side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–81
Fig. F46
Pipe connection plan for Wärtsilä 6RT-flex50-D with ABB A175-L
(TC exh. side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–82
Fig. F47
Pipe connection plan for Wärtsilä 6RT-flex50-D with ABB A175-L
(TC exh. side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–83
Fig. F48
Pipe connection details for Wärtsilä 6RT-flex50-D with ABB A175-L
(TC exh. side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–84
Fig. F49
Pipe connection details for Wärtsilä 6RT-flex50-D with ABB A175-L
(TC exh. side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–85
Fig. F50
Pipe connection plan for Wärtsilä 6RT-flex50-D with ABB A175-L
(TC exh. side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–86
Fig. F51
Pipe connection plan for Wärtsilä 5RT-flex50-D with ABB A170-L
(TC aft end) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F–87
Fig. G1
EMA concept comprising DENIS, WECS and MAPEX modules . . . . . . . . . . . . . . . .
G–1
Fig. G2
RT-flex automation layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–2
Fig. G3
DENIS-9520 remote control system layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–6
Fig. G4
Recommended manoeuvring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–8
Fig. G5
Integrated/split solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–10
Fig. G6
MAPEX-PR – System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–20
Fig. G7
MAPEX-MD – Visualization software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G–20
Fig. H1
Engine dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–2
Fig. H5
End elevation of Wärtsilä 6RT-flex50-D with ABB A175-L (TC exh. side) . . . . . . . .
H–8
Fig. H6
Exhaust side elevation and plan view of Wärtsilä 6RT-flex50-D with ABB A175-L
(TC exh. side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–9
Fig. H7
End elevation of Wärtsilä 7RT-flex50-D with ABB A175-L (TC exh. side) . . . . . . . .
H–10
Fig. H8
Exhaust side elevation and plan view of Wärtsilä 7RT-flex50-D with ABB A175-L
(TC exh. side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–11
Fig. H9
End elevation of Wärtsilä 5RT-flex50-D with ABB A170-L (TC aft end) . . . . . . . . . .
H–12
Fig. H10
Exhaust side elevation and plan view of Wärtsilä 5RT-flex50-D with ABB A170-L
(TC aft end) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–13
Fig. H11
Platform arrangement for Wärtsilä 6RT-flex50-D with ABB A175-L
(TC exh. side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–14
Fig. H12
Upper platform for Wärtsilä 6RT-flex50-D with ABB A175-L
(TC exh. side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–15
Fig. H13
Lower platform for Wärtsilä 7RT-flex50-D with ABB A175-L
(TC exh. side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–16
Fig. H14
Platform arrangement for Wärtsilä 5RT-flex50-D with ABB A170-L
(TC aft end) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–17
Fig. H15
Engine seating and foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–20
Fig. H16
Cross section of holding-down studs and epoxy resin chocks . . . . . . . . . . . . . . . . . .
H–21
Wärtsilä Switzerland Ltd k 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
List of figures
Fig. H17
Elastic bolt, round nut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–22
Fig. H18
Sleeve, bush, spherical nut, seating washer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–23
Fig. H19
Sealing piece, joint disc, rubber pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–24
Fig. H20
Engine seating side stoppers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–25
Fig. H21
5&6RT-flex50-D Side stopper arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–26
Fig. H22
7RT-flex50-D Side stopper arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–27
Fig. H23
8RT-flex50-D Side stopper arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–28
Fig. H24
5&6RT-flex50-D Chocking and drilling plan for engine seating
with epoxy resin chocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–29
Fig. H25
7RT-flex50-D chocking and drilling plan for engine seating
with epoxy resin chocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–30
Fig. H26
8RT-flex50-D chocking and drilling plan for engine seating
with epoxy resin chocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–31
Fig. H27
Drilling plan details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–32
Fig. H28
Arrangement of jacking screw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–33
Fig. H29
Position of jacking screws for engine alignment of 5&6RT-flex50-D . . . . . . . . . . . . .
H–34
Fig. H30
Position of jacking screws for engine alignment of 7&8RT-flex50-D . . . . . . . . . . . . .
H–35
Fig. H31
Engine coupling fitted bolt arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–37
Fig. H32
Detail of coupling bolt and nut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–38
Fig. H33
Engine coupling and flywheel casing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–39
Fig. H34
Shaft earthing arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–41
Fig. H35
Shaft earthing slip-ring arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–41
Fig. H36
Shaft earthing with condition monitoring facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–42
Fig. H37
Lateral stay details – friction type, on exhaust side . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–44
Fig. H38
Lateral stay details – friction type, on fuel side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–45
Fig. H39
Lateral stay details – hydraulic type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H–46
Fig. I1
Speed dependent maximum average NOx emissions by engines . . . . . . . . . . . . . . .
I–1
Fig. I2
Wärtsilä RT-flex50-D: compliance with IMO regulations . . . . . . . . . . . . . . . . . . . . . . .
I–2
Fig. I3
Engine sound pressure level at 1 m distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I–3
Fig. I4
Engine exhaust gas sound pressure level at funnel top . . . . . . . . . . . . . . . . . . . . . . .
I–4
Fig. I5
Structure borne noise level at engine feet vertical . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I–5
Fig. J1
Tool panel storage arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J–5
Fig. J2
Tool panel location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J–6
Fig. J3
Tool panel 1: General tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J–7
Fig. J4
Tool panel 2: for valve seat grinding / control tools . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J–8
Fig. J5
Tool panel 3: for nozzle dismantling / overhaul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J–9
Fig. J6
Tool panel 4: for cylinder liner / head dismantling . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J–10
Fig. J7
Tool panel 5: for piston dismantling / overhaul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J–11
Fig. J8
Tool panel 6: for piston / various tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J–12
Fig. J9
Tool panel 7: Crankcase tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J–13
Fig. J10
Tool panel 8: for gear drive dismantling / control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J–14
Fig. K1
Main bearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–10
Fig. K2
Thrust bearing pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–11
Fig. K3
Cylinder liner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–12
Fig. K4
Cylinder cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–13
26.14.40 – Issue XII.10 – Rev. 0 l Wärtsilä Switzerland Ltd
Marine Installation Manual
List of figures
RT-flex50-D
Fig. K5
Fuel injection valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–14
Fig. K6
Starting air valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–15
Fig. K7
Exhaust valve
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–16
Fig. K8
Indicator valve (cock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–17
Fig. K9
Connecting rod bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–18
Fig. K10
Piston
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–19
Fig. K11
Piston cooling and crosshead lubricating linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–20
Fig. K12
Gland box piston rod
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–21
Fig. K13
Flap for scavenging air receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–22
Fig. K14
Cylinder lubricating pump and drive (conventional lubricating system) . . . . . . . . . . .
K–23
Fig. K15
Expansion piece of exhaust system
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–24
Fig. K16
Securing spare piston and rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–26
Fig. K17
Securing spare exhaust valves
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–26
Fig. K18
Securing spare exhaust valve cages without . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–27
Fig. K19
Securing spare cylinder liner
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K–27
Fig. L20
Engine sub-assemblies (proposal)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L–4
Wärtsilä Switzerland Ltd m 26.14.40 – Issue XII.10 – Rev. 0
List of tables Marine Installation Manual RT-flex50-D
Table A1 Primary engine data of Wärtsilä RT-flex50-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–2 Table C1 Scavenge air cooler parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–11 Table C2 Turbocharger weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–11 Table C3 Number of auxiliary blowers per engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–17 Table C4 Electrical power consumers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–17 Table C5 Pressure and temperature ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–18 Table D1 External forces and moments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–10 Table D2 Countermeasures for external mass moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–11 Table D3 Countermeasures for lateral and longitudinal rocking . . . . . . . . . . . . . . . . . . . . . . . . . D–11 Table D4 Countermeasures for torsional & axial vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–11 Table D5 Marine installation Torsional Vibration Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–13 Table D6 Testbed installation Torsional Vibration Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . D–14 Table D7 Marine installation Coupled Axial Vibration Calculation . . . . . . . . . . . . . . . . . . . . . . . . D–15 Table D8 Marine installation Bending Vibration Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–16 Table E1 PTO power and speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–2 Table F1 R1 data for central fresh water cooling system with single-stage
SAC and integrated HT circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–2 Table F2 R1 data for central fresh water cooling system with single-stage
SAC and integrated HT circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–3 Table F3 R1 data for central fresh water cooling system with single-stage
SAC and separate HT circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–4 Table F4 R1 data for central fresh water cooling system with single-stage
SAC and separate HT circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–5 Table F5 Central fresh water cooling system with single-stage scavenge air cooler
and integrated HT circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–9 Table F6 Central fresh water cooling system with single-stage scavenge air cooler
and separate HT circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–11 Table F7 Lubricating oil system: referring legend, remarks and data . . . . . . . . . . . . . . . . . . . . . F–24 Table F8 Lubricating oil treatment and transfer system data. . . . . . . . . . . . . . . . . . . . . . . . . . . . F–30 Table F9 Global brands of lubricating oils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–31 Table F10 Local brands of lubricating oils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–32 Table F11 Number of vertical lubricating oil drains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–33 Table F12 Minimum inclination angles at which the engine is to remain fully operational . . . . F–34 Table F13 NAS 1638 cleanliness classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–43 Table F14 Fuel oil requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–44 Table F15 Heavy fuel oil treatment and tank system data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–49 Table F16 Pressurized fuel oil system data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–53 Table F17 Fuel oil system mixing unit: nominal pipe diameters for connections A, B, C . . . . . F–57 Table F18 Air receiver and air compressor capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–62 Table F19 Control air capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–64 Table F20 Leakage collection and washing system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–65 Table F21 Guidance for air filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–75 Table F22 Recommended fluid velocities and flow rates for pipework . . . . . . . . . . . . . . . . . . . . . F–77 Table G1 Suppliers of remote control systems and electronic speed control systrems . . . . . . G–5 Table G2 Alarm and safety functions of Wärtsilä RT-flex50-D marine diesel engines . . . . . . . G–12
26.14.40 – Issue XII.10 – Rev. 0 n Wärtsilä Switzerland Ltd
Marine Installation Manual
List of tables
RT-flex50-D
Table G3 Alarm and safety functions of Wärtsilä RT-flex50-D marine diesel engines . . . . . . . G–13 Table G4 Alarm and safety functions of Wärtsilä RT-flex50-D marine diesel engines . . . . . . . G–14 Table H1 Engine dimensions and masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H–2 Table H2 Dimensions and masses of main components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H–3 Table H3 Expected thermal expansion figures at turbocharger gas outlet . . . . . . . . . . . . . . . . H–4 Table H4 Fluid quantities in the engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H–5 Table H5 Required properties of epoxy resin material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H–19 Table H6 Tightening pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H–19 Table H7 Parts list for engine seating with epoxy resin chocks . . . . . . . . . . . . . . . . . . . . . . . . . . H–22 Table H8 Details and dimensions of epoxy resin chocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H–32 Table H9 Number and diameter of holes drilled into top plate . . . . . . . . . . . . . . . . . . . . . . . . . . . H–32 Table H10 Number of jacking screws to be applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H–33 Table H11 Recommended quantities of fire extinguishing medium . . . . . . . . . . . . . . . . . . . . . . . H–47 Table K1 List of spare parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K–8 Table L2 Approximate weights of sub-assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L–4
Wärtsilä Switzerland Ltd o 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
Index
A
Address Wärtsilä Switzerland, A–1 Air filtration, F–75 Air flow requirements, F–72 Air vent pipe, F–13 Air vents, F–71 Alarm sensors and safety functions, G–11 Aluminium, F–45 Ambient temperature consideration, F–73 Approved propulsion control systems, G–5 Arctic conditions, F–73 Ash, F–45 Automatic back-flushing filter, F–58 Automatic back-flushing lubricating oil filter, F–27 Automatic temperature control valve, F–13 Automation layout, G–2 Auxiliary blower, C–17 Availability of winGTD, C–19 Axial vibration, D–8
B
Back-flushing filter after the feed pumps, F–59 Barred-speed range, D–6
C
Carbon residue, F–45 Central cooler, F–12 Central fresh water cooling system components, F–12 Centrifugal separators, F–50 Change-over duplex filter, F–27, F–58 CMCR, C–1, C–5 Compensator, D–2 Contents of fluid in the engine, H–5 Continuous service rating, C–5 Control air system supply, F–64 Conversion factors, M–2 Crane requirements, H–5 Cross section, B–2 Cylinder cooling water pump delivery head, F–13 Cylinder cooling water system expansion tank, F–13 Cylinder lubricating oil system, F–28
D
Daily tanks, F–50 Delta Tuning, A–3 DENIS-9520, G–3 Design conditions, C–10 Dimensions and masses, H–2 Dismantling of scavenge air cooler, H–7 Duplex filter in the feed system, F–59 Dynamic behaviour, D–12
E
Earthing slip-rings, H–41 ECR manual control panel, G–7 Electrical power consumers, C–17 Electrically driven auxiliary blowers, C–17 Electrically driven compensator, D–5 Electronic speed control system, G–7 EMA concept, G–1 Engine air inlet, F–73 Engine alignment tools, H–33 Engine coupling, H–36 Engine data, C–10 Engine description, B–1 Engine dismantling, L–2 Engine dispatch, L–3 Engine earthing, H–40 Engine emissions, I–1 Engine holding-down studs, H–21 Engine installation on board, L–5 Engine layoutfield and load range, C–1 Engine margin (EM), C–5 Engine noise, I–3 Engine numbering and description, B–4 Engine performance data, C–10 Engine pre-heating, F–20 Engine seating, H–18 Engine stays, D–5, H–43 Engine sub-assemblies, L–4 Engine system data, F–1 Engine-room ventilation, F–72 Epoxy resin chocks, H–18 Exhaust gas system, F–69 External forces and moments, D–1 Extinguishing agents, H–47
F
Filling process of lub. oil tank, F–39 Fire protection, H–47
26.14.40 – Issue XII.10 – Rev. 0 p Wärtsilä Switzerland Ltd
Marine Installation Manual
Index
RT-flex50-D
Fitting coupling bolts, H–36 Flash point, F–46 Flushing the fuel oil system, F–60 Flushing the lubricating oil system, F–40 Free first order moments, D–2 Free second order moments, D–2 Fresh water generator, F–18 Fresh water pump, F–12 Fuel oil endheater, F–56 Fuel oil feed pump, F–55 Fuel oil requirements, F–44 Fuel oil system, F–44 Fuel oil system mixing unit, F–56 Fuel oil system on the engine, F–53 Fuel oil treatment, F–48
G
General engine data, C–1 General service and working air, F–64
H
Heavy fuel oil system components, F–55 High-temperature circuit, F–12 High-pressure booster pump, F–56 HT cooling water pump, F–12 Hull vibration, D–6, D–9
I
Ignition quality, F–46 Illustrations of spare parts, K–10 Installation and assembly of sub-assemblies, L–5 Installing a complete engine, L–6 Installing an engine from assembled sub-units, L–6 Interface to alarm and monitoring system, G–9 Introduction of the engine, A–1 ISO Standard 15550, C–10 ISO Standard 3046-1, C–10
L
Lateral engine vibration (rocking), D–4 Leakage collection system, F–65 Light running margin (LR), C–4 List of spare parts, K–1 Load range, C–2 Load range limlt with controllable pitch propeller, C–8 Load range with main-engine driven generator, C–7 Load range limits, C–5 Longitudinal engine vibration, D–6 Low NOx Tuning, I–2 Low-Load Tuning, A–3 Low-temperature circuit, F–12 Lubricating oil brands, F–31 Lubricating oil cooler, F–27 Lubricating oil drain tank, F–33 Lubricating oil full flow filters, F–27 Lubricating oil low-pressure pump, F–27 Lubricating oil maintenance and treatment, F–28 Lubricating oil requirements, F–28 Lubricating oil separator, F–28 Lubricating oil system, F–21 Lubricating oil system for turbocharger, F–21
M
Main bearing oil, F–21 Main lubricating oil system, F–21 Main lubricating oil system components, F–27 Main shaft earthing system, H–41 MAPEX Engine Fitness Family, G–18
N
Noise, I–3
O
Operational margin (OM), C–5 Order forms for vibration calculations and simulation, D–12 Outline drawings, H–8 Overload limit, C–5 Overspeed limit, C–6
P
Part-load data diagram, F–1 Pipe connections, F–81 Pipe size and flow details, F–77 Pipe velocities, F–77 Piping symbols, F–78 Piping systems, F–7 Piston dismantling heights, H–5 Pitching (longitudinal engine vibration), D–6 Plaform arrangements, H–14 Pour point, F–46
Wärtsilä Switzerland Ltd q 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
Index
Power demand of an engine, C–1 Power related unbalance (PRU), D–3 Power take off (PTO), D–6 Power/speed combination, C–1 Pressure and temperature ranges, C–17 Pressure regulating valve, F–55 Pressurized fuel oil system, F–51 Primary engine data, A–2 Propeller characteristics, C–1 Propeller curve, C–3 Propeller efficiency, C–1 Protection against corrosion (spare parts), K–25 PTO arrangements, E–2
Q
Questionnaire for engine data, F–6
R
Rating, C–1 Rating field, C–1 Rating points, C–2 Recommended special tools, J–1 Reduction of axial vibration, D–8 Reduction of lateral vibration, D–5 Reduction of torsional vibration, D–7 Redundancy of WECS power supply, G–15 Reference conditions, C–10 Reference to other documentation, M–3 Remote control system, G–7 Removing rust preventing oils, L–5 Rocking (lateral engine vibration), D–4 RT-flex key parts, B–3 RT-flex system, B–1
S
Safety system, G–7 Scavenge air cooler, F–12 Scavenge air cooler parameters, C–11 Scavenge air system, F–73 Sea margin (SM), C–3 Sea trial power, C–3 Sea-water pump, F–12 Sea-water strainer, F–12 Sediment, F–45 Separation efficiency, F–51 Separator arrangement, F–50 Settling tanks, F–50 Shafting alignment, L–7 Shafting system, D–8 Shop trial, L–8 SI dimensions, M–1 Silicon, F–45 Spare parts, K–1 Special tools, available on loan, J–1 Spraycoating with rust preventing oil, L–1 Standard tools, J–1 Starting air compressors, F–64 Starting air receivers, F–64 Starting and control air system specification, F–64 Starting and control air systems, F–62 Storage of spare parts on board, K–25 Storage proposal, J–1 Sulphur, F–45 System dynamics, D–12
T
TC and SAC selection, C–12 Temperature control, F–12 Thermal expansion at TC expansion joint, H–4 Tools, J–1 Torsional vibration, D–6 Trace metals, F–45 Treatment against corrosion, L–1 Tuning options of RT-flex engines, A–3 Turbocharger and scavenge air cooler, C–11 Turbocharger spare parts, K–25, K–26 Turbocharger weights, C–11
U
Using winGTD, C–19
V
Vibration aspects, D–1 Viscosity, F–45
W
Waste heat recovery, E–2 Water in fuel oil, F–46 WECS-9520, G–15 WECS-9520 external power supply, G–15
26.14.40 – Issue XII.10 – Rev. 0 r Wärtsilä Switzerland Ltd
Marine Installation Manual
Index
RT-flex50-D
Working air, F–64
Wärtsilä Switzerland Ltd s 26.14.40 – Issue XII.10 – Rev. 0
Abbreviations Marine Installation Manual RT-flex50-D
ALM
Alarm
AMS
Attended machinery space
BFO
Bunker fuel oil
BN
Base Number
BSEF
Brake specific exhaust gas flow
BSFC
Brake specific fuel consumption
CCAI
Calculated Carbon Aromaticity Index
CCR
Conradson carbon
CCW
Cylinder cooling water
CMCR
Contract maximum continuous rating (Rx)
CO
Cost-optimised
CPP
Controllable pitch propeller
CSR
Continuous service rating (also
designated NOR and NCR)
cSt
centi-Stoke (kinematic viscosity)
DAH
Differential pressure alarm, high
DENIS
Diesel engine control and optimizing
specification
EM
Engine margin
EO
Efficiency-optimised
FCM
Flex control module
FPP
Fixed pitch propeller
FQS
Fuel quality setting
FW
Fresh water
GEA
Scavenge air cooler (GEA manufacture)
HFO
Heavy fuel oil
HT
High temperature
IMO
International Maritime Organisation
IND
Indication
ISO
International Standard Organisation
kW
Kilowatt
kWe
Kilowatt electrical
kWh
Kilowatt hour
LAH
Level alarm, high
LAL
Level alarm, low
LCV
Lower calorific value
LI
Level indicator
LR
Light running margin
LSL
Level switch, low
LT
Low temperature
LLT
Low-Load Tuning
M
Torque
MAPEX
Monitoring and maintenance performance
enhancement with expert knowledge
M1H
External moment 1st order horizontal
M1V
M2V MCR MDO mep MET MHI MIM MMI N, n NAS NCR NOR OM OPI P PAL PI PLS ppm PRU PTO RCS RW1
SAC SAE S/G SHD SIB SLD SM SSU SU SW TBO TC TI tEaT UMS VI WCH WECS winGTD M External moment 1st order vertical External moment 2nd order vertical Maximum continuous rating (R1) Marine diesel oil Mean effective pressure Turbocharger (Mitsubishi manufacture) Mitsubishi Heavy Industries Marine installation manual Man–machine interface Speed of rotation National Aerospace Standard Nominal continuous rating Nominal operation rating Operational margin Operator interface Power Pressure alarm, low Pressure indicator Pulse Lubricating System (cylinder liner) Parts per million Power related unbalance Power take off Remote control system Redwood seconds No. 1 (kinematic viscosity) Scavenge air cooler Society of Automotive Engineers Shaft generator Shut down Shipyard interface box Slow down Sea margin Saybolt second universal Supply unit Sea-water Time between overhauls Turbocharger Temperature indicator Temperature of exhaust gas after turbine Unattended machinery space Viscosity index Wärtsilä Switzerland Wärtsilä Engine Control System General Technical Data program Torque variation
26.14.40 – Issue XII.10 – Rev. 0 t Wärtsilä Switzerland Ltd
Marine Installation Manual
A. Introduction
RT-flex50-D
The Wärtsilä RT-flex system represents a major step forward in the technology of large diesel engines:
Common rail injection – fully suitable for heavy fuel oil operation.
Engine power Engine power
[kW] [bhp] 100 000 120 000 80 000
100 000
60 000
80 000 50 000
60 000 40 000
The Marine Installation Manual (MIM) is for use by
project and design personnel. Each chapter con-
all other RTA
30 000
and RT-flex engines
40 000
tains detailed information required by design engineers and naval architects enabling them to op20
000
RT-flex50-D
timize plant items and machinery space, and to
20 000
carry out installation design work.
This book is only distributed to persons dealing
10 000
with this engine. 8000
10 000
6000 8000
6000 4000
F20.0074
Fig. A1 Power/speed range of all IMO-2000 regulation compatible RTA and RT-flex engines
50
60 70 80 90 100 120 140 160 180 200 Engine speed [rpm]
This manual provides the information required for the layout of marine propulsion plants. It is not to be considered as a specification. The build specification is subject to the laws of the legislative body of the country of registration and the rules of the classification society selected by the owners. Its content is subject to the understanding that any data and information herein have been prepared with care and to the best of our knowledge. We do not, however, assume any liability with regard to unforeseen variations in accuracy thereof or for any consequences arising therefrom.
Wärtsilä Switzerland Ltd PO Box 414 CH-8401 Winterthur, Switzerland
Telephone: +41 52 262 4922 Telefax: +41 52 262 0707 http://www.wartsila.com
Wärtsilä Switzerland Ltd A–1 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
A. Introduction
A1 Primary engine data
Engine
Wärtsilä RT-flex50-D
Bore x stroke [mm]
500 x 2050
Speed [rpm]
124
124
99
99
Engine power (MCR)
Cylinder
Power
R1
R2
R3
R4
5
[kW] [bhp]
8725 11 875
6100 8300
6975 9500
6100 8300
6
[kW] [bhp]
10 470 14 250
7320 9960
8370 11 400
7320 9960
7
[kW] [bhp]
12 215 16 625
8540 11 620
9765 13 300
8540 11 620
8 TC exh. side only
[kW] [bhp]
13 960 19 000
9760 13 280
11 160 15 200
9760 13 280
Brake specific fuel consumption (BSFC)
Load
100 %
[g/kWh] [g/bhph]
171 126
165 121
171 126
167 123
mep [bar]
21.0
14.7
21.0
18.4
Lubricating oil consumption (for fully run-in engines under normal operating conditions)
System oil
approximately 5 kg/cyl per day
Cylinder oil 1)
Pulse Lubricating System (PLS)
guide feed rate 0.7 g/kWh
Conventional cyl. lub. system 2)
0.9 – 1.3 g/kWh
Remark: 1) Data for guidance only, it may have to be increased as the actual cylinder lubricating oil consumption in service is dependent on operational factors. 2) Conventional lub. oil system (CLU-3) is available as an option.
Table A1 Primary engine data of Wärtsilä RT-flex50-D
All brake specific fuel consumptions (BSFC) are
To determine the power and BSFC figures accuquoted
for fuel of lower calorific value 42.7 MJ/kg
rately in bhp and g/bhph respectively, the standard
(10200 kcal/kg). All other reference conditions
kW-based figures have to be converted by
refer to ISO standard (ISO 3046-1). The figures for
factor 1.36.
BSFC are given with a tolerance of +5 %.
The values of power in kilowatt (kW) and fuel consumption
in g/kWh are the standard figures, and
discrepancies occur between these and the corresponding
brake horsepower (bhp) values owing to
the rounding of numbers.
26.14.40 – Issue XII.10 – Rev. 0 A–2 Wärtsilä Switzerland Ltd
Marine Installation Manual
RT-flex50-D
A. Introduction
A2 Tuning options
With the introduction of the Wärtsilä RT-flex engines, a major step in the development of marine 2-stroke engine was taken. After the successful introduction of Delta Tuning, Wärtsilä Switzerland Ltd is taking this development even further by introducing Low-Load Tuning.
A2.1 Delta Tuning
Delta Tuning makes it possible to further reduce the specific fuel oil consumption while still complying with all existing emission legislation. Moreover, this is achieved only by changing software parameters and without having to modify a single engine part. Delta Tuning option needs to be specified at a very early stage in the project.
In realising Delta Tuning, the flexibility of the RT-flex system in terms of free selection of injection and exhaust valve control parameters, specifically variable injection timing (VIT) and variable exhaust closing (VEC) is utilised for reducing the brake specific fuel consumption (BSFC) in the part load range below 90 % load.
Due to the trade-off between BSFC and NOx emissions, the associated increase in NOx emissions at part load must then be compensated by a corresponding decrease in the full load NOx emissions. Hence, there is also a slight increase in full load BSFC, in order to maintain compliance of the engine with the IMO NOx regulations.
The concept is based on tailoring the firing pressure and firing ratio for maximum efficiency in the range up to 90 % load and then reducing them again towards full load. In this process, the same design-related limitations with respect to these two quantities are applied as in the specification of the Standard Tuning.
The reliability of the engine is by no means impaired by the application of Delta Tuning since all existing limitations to mechanical stresses and thermal load are observed.
A2.2 Low-Load Tuning (LLT)
The complete flexibility in engine setting that is an integral feature of the RT-flex common-rail system, enables fuel injection pressures and timing to be freely set at all loads. It is employed in special tuning regimes to optimize brake specific fuel consumption (BSFC) at individual engine loads.
This concept was first applied in Delta Tuning, which reduced BSFC for Wärtsilä RT-flex engines in the operating range below 90 % engine load. The concept has now been extended to Low-Load Tuning, which provides the lowest possible BSFC in the operating range of 40 to 70 % engine load. With Low-Load Tuning, RT-flex engines can be operated continuously and reliably at any load in the range of 30 to 100 %.
The Low-Load Tuning concept is based on the combination of a specifically designed turbocharging system setup and appropriately adjusted engine parameters related to fuel injection and exhaust valve control.
The reduced part-load BSFC in Low-Load Tuning is achieved by optimizing the turbocharger match for part-load operation. This is done by increasing the combustion pressure at less than 75 % load through an increased scavenge air pressure and a higher air flow (waste gate closed), and by blowing off part of the exhaust gas flow (waste gate open) at engine loads above 85 %. The higher scavenge air pressure at part-load automatically results in lower thermal load and better combustion over the entire part-load range.
Low-Load Tuning requires the fitting of an exhaust gas waste gate (a pneumatically-operated valve, see figure A2) on the exhaust gas receiver before the turbocharger turbine. Exhaust gas blown off through the waste gate is by-passed to the main exhaust uptake. The waste gate is opened at engine loads above 85 % to protect the turbocharger and the engine from overload.
Wärtsilä Switzerland Ltd A–3 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual A. Introduction RT-flex50-D
A Wärtsilä RT-flex engine with Low-Load Tuning complies with the IMO Tier II regulations for NOx emissions.
The engine parameters controlling the fuel injection and exhaust valve operational characteristic have to be selected appropriately in order to allow realizing the full potential of the concept while ensuring compliance with the applicable NOx limit value. On the one hand, these parameters have to be specified in such a way that the transition between the bypass-closed and bypass-opened operating ranges can be realized as smooth as possible. On the other hand, higher scavenge air pressure trendwise increases NOx emissions – hence, for achieving the same weightened average value over the test cycle, the parameters also need to be adjusted appropriately for compensating this increase.
Exhaust
gas receiver Engine Waste gate Scavenge air receiver
Fig. A2 Schematic functional principle of Low-Load Tuning
A2.3 Further aspects of engine tuning options
Tuning for de-rated engines:
For various reasons, the margin against the IMO NOx limit decreases for de-rated engines. Delta Tuning and Low-load Tuning thus holds the highest benefits for engines rated close to R1. With the de-rating, the effect diminishes and, in fact, Delta Tuning is not applicable in the entire field (see figure A3).
Effect on engine dynamics:
The application of Delta Tuning or Low-Load Tuning have an influence on the harmonic gas excitations and, as a consequence, the torsional and axial vibrations of the installation. Hence, the corresponding calculations have to be carried out with the correct data in order to be able to apply appropriate countermeasures, if necessary.
Project specification for RT-flex engines:
Although Delta Tuning is realised in such a way that it could almost be considered a pushbutton option, its selection as well as the selection of LLT have an effect on other aspects of engine and system design as well. Therefore the tuning option to be applied to RT-flex engines needs to be specified at a very early stage in the project:
–
The calculations of the torsional and axial vibrations of the installation have to be performed using the correct data.
–
The layout of the ancillary systems has to be based on the correct specifications.
–
In order to prepare the software for the RT-flex system control, the parameters also have to be known in due time before commissioning of the engine.
26.14.40 – Issue XII.10 – Rev. 0 A–4 Wärtsilä Switzerland Ltd
Marine Installation Manual
A. Introduction
RT-flex50-D
Engine power
[% R1]
100
R1
95
RT-flex50-D engines
90
85
80
R3
Delta Tuning
area
75
Delta Tuning
not applicable
70
R4
R2
Engine speed
65 70
[% R1]75 80 85 90 95 100
F10.5124
Fig. A3
Rating fields for Delta Tuning and Low-Load Tuning
Engine power
[% R1] R1
95 RT-flex50-D engines
90
85
R3 100
80
Low-Load Tuning
75
area
70 R2R4
Engine speed
65 [% R1]70
F10.5124
75
80 85 90 95100
Reduction of BSFC [g/kWh]
4 2 0
BSFC at R1 [g/kWh]
–2 –4 –6
–8
This illustration will be completed as soon as possible.
ISO conditions, tolerance +5%
50% 60% Load 75% 90% 100%
Fig. A4 BSFC deviation for Delta Tuning and Low-Load Tuning compared with Standard Tuning
Data for brake specific fuel consumption (BSFC) in table A1 and data in tables F1 and F3 refer to Standard Tuning. Data for Delta Tuning and Low-Load Tuning can be obtained from the winGTD (see figure C14).
Wärtsilä Switzerland Ltd A–5 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
A. Introduction
26.14.40 – Issue XII.10 – Rev. 0 A–6 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
B. Engine description
B1 Engine description
The Wärtsilä RT-flex50-D engine is a camshaft-less low-speed, direct-reversible, two-stroke engine, fully electronically controlled. The Wärtsilä RT-flex50-D is designed for running on a wide range of fuels from marine diesel oil (MDO) to heavy fuel oils (HFO) of different
qualities.
Main features:
Bore
500 mm
Stroke
2050 mm
Number of cylinders
5 to 8
Main parameters (R1):
Power (MCR)
1745 kW/cyl
Speed (MCR)
124 rpm
Mean effect. press.
21 bar
Mean piston speed
8.5 m/s
The Wärtsilä RT-flex50-D is available with 5 to 8 cylinders rated at 1745 kW/cyl to provide a maximum output of 13 960 kW for the 8-cylinder engine (see primary engine data on table A1).
RT-flex engine
Rail unit
Supply unit drive
Supply unit
Overall sizes of engines
5 cyl.
8 cyl.
Length (bedplate) [m]
5.23
7.87
Height [m]
8.74
8.74
Dry weight [t]
200
280
The design of the Wärtsilä RT-flex50-D includes the well-proven features of the RTA engines like the bore-cooling principle for the pistons, cylinder liners, cylinder covers and exhaust valve seats.
The RT-flex system (figure B3)
The typical RTA configuration of fuel injection pumps and valve drives with the camshaft and its gear train is replaced by a compact set of supply pumps in the supply unit and the common rail with the integrated electronic Wärtsilä engine control system WECS-9520.
RTA engine
Fuel pump
Camshaft
Servomotor
Start air distr.
Camshaft drive
This illustration is considered as
general information only.
Drawn for engines with TC exh. side.
Crank angle
sensor
Functional principle applicable for engines with TC aft end.
Fig. B1 Comparison of Wärtsilä RTA engines and RT-flex engines
Wärtsilä Switzerland Ltd B–1 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
B. Engine description
All key engine functions such as fuel injection, exhaust valve drives, engine starting and cylinder lubrication are fully under electronic control. The timing of the fuel injection, its volumetric and various injection patterns are regulated and controlled by the WECS-9520 control system.
Engine installation and operation
Compared with the RTA engines, the RT-flex has no additional or particular requirements for the engine installation and shipboard operation. The engine outline dimensions and foundation, the installation, the key engine parameters, the integration into ship automation and other interfaces of the RT-flex are identical with the RTA engines.
The major benefits of the RT-flex system are:
•
Adaptation to different operating modes.
•
Adaptation to different fuels.
•
Delta Tuning, as an optional application, for reduced brake specific fuel consumption (BSFC) in the part-load range below 90 %.
•
Another optional application is Low-Load Tuning, which provides the lowest possible BSFC in the operating range of 40 to 70 % engine load.
•
Optimised fuel consumption.
•
Precise speed regulation, in particular at very slow steaming (adequate lubricating of propeller shaft bearings must be provided).
•
Smokeless mode for slow steaming.
•
Benefits in terms of operating costs, maintenance requirement and compliance with emissions regulations.
•
Slight reduction of engine mass, compared to RTA engines.
Common design features of RTA and RT-flex engines:
Welded bedplate with integrated thrust bearings and main bearings designed as large thin-shell white metal bearings.
Remark: Direction of rotation: clockwise as standard
(viewed from the propeller towards the engine).
This cross section is considered as general information only. F10.5318 Drawn for engines with TC exh. side.
Fig. B2 Cross section of Wärtsilä RT-flex engine
2 Sturdy engine structure with stiff thin-wall box type columns and cast iron cylinder blocks attached to the bedplate by pre-tensioned vertical tie rods.
3 Semi-built crankshaft.
4 Main bearing jack bolts for easier assembly and disassembly of white metal shell bearings.
5 Thin-shell white metal bottom-end bearings.
6 Crosshead with crosshead pin and single-piece white metal large surface bearings lubricated by the engine lubricating system.
26.14.40 – Issue XII.10 – Rev. 0 B–2 Wärtsilä Switzerland Ltd
1
Marine Installation Manual
B. Engine description
RT-flex50-D
7 Rigid cast iron cylinder monoblock.
8 Special grey cast iron cylinder liners, water cooled, and with load dependent cylinder lubrication.
9 Cylinder cover of high-grade material with a bolted-on exhaust valve cage containing a Nimonic 80A exhaust valve.
10 Piston with crown cooled by combined jet-shaker oil cooling.
The RT-flex key parts:
13 Supply unit: High-efficiency fuel pumps feeding the 1000 bar fuel manifold.
14 Rail unit (Common rail): Both common rail injection and exhaust valve actuation are controlled by quick acting solenoid valves (Wärtsilä Rail Valve LP-1).
15 Electronic engine control WECS-9520 for monitoring and controlling the key engine functions.
11 Constant-pressure turbocharging system comprising high-efficiency turbochargers and auxiliary blowers for low-load operation.
12 TriboPack designed as a standard feature for excellent piston running and extended TBO up to 3 years.
F10.5250
15 13 14 Volumetric injection control WECS-9520 control
Fig.
B3 Wärtsilä RT-flex system comprising supply unit, common rail, electronic engine control system WECS-9520
Wärtsilä Switzerland Ltd B–3 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
B. Engine description
B2 Engine numbering and designation
The engine components are numbered from the driving end to the free end as shown in the figure below.
Driving end
1 21
3
2 1
4
3
5
4
6
5
7
6 2
8
7
9
8 10
Free end Numbering of cylinders Numbering of turbochargers
Thrust bearing
Numbering of main bearings
Rail unit
Fuel side
Exhaust side
Clockwise rotation
Anti-clockwise rotation
This cross section is considered as general information only.
F10.5265
Drawn for engines with TC exh. side.
Fig. B4
Engine numbering and designation
26.14.40 – Issue XII.10 – Rev. 0 B–4 Wärtsilä Switzerland Ltd
Marine Installation Manual
C. General engine data
RT-flex50-D
C1 Engine rating field and load range
Selecting a suitable main engine to meet the power demands of a given project involves proper tuning in respect of load range and influence of operating conditions which are likely to prevail throughout the entire life of the ship. This chapter explains the main principles in selecting a Wärtsilä 2-stroke marine diesel engine.
Every engine has a rating field within which the combination of power and speed (= rating) can be selected. Contrary to the ‘rating field’, the ‘load range’ is the admissible area of operation once the CMCR has been determined.
In order to define the required contract maximum continuous rating (CMCR), various parameters need to be considered such as propulsive power, propeller efficiency, operational flexibility, power and speed margins, possibility of a main-engine driven generator, and the ship’s trading patterns.
Selecting the most suitable engine is vital to achieving an efficient cost/benefit response to a specific transport requirement.
C1.1 Rating field
The rating field shown in figure C1 is the area of power and engine speed. In this area the contract maximum continuous rating of an engine can be positioned individually to give the desired combination of propulsive power and rotational speed. Engines within this rating field will be tuned for maximum firing pressure and best efficiency. Experience over the last years has shown that engines are ordered with CMCR-points in the upper part of the rating field only.
Engine power [%]
R1
100
95
90
R2Rx1
Rx2
R3
R4 Rating line fulfilling a ship’s power require85 ment for a constant speed 80
75
70
65
Engine speed
[%]
70 75 80 85 90 95100
Nominal propeller characteristic 1
Nominal propeller characteristic 2
The contract maximum continuous rating (Rx) may be
freely positioned within the rating field for that engine.
F20.0045
Fig. C1 Rating field of the Wärtsilä RT-flex50-D engine.
The engine speed is given on the horizontal axis and the engine power on the vertical axis of the rating field. Both are expressed as a percentage (%) of the respective engine’s nominal R1 parameters.
Percentage values are being used so that the same diagram can be applied to various engine models. The scales are logarithmic so that exponential curves, such as propeller characteristics (cubic power) and mean effective pressure (mep) curves (first power), are straight lines.
The rating field serves to determine the specific fuel oil consumption, exhaust gas flow and temperature, fuel injection parameters, turbocharger and scavenge air cooler specifications for a given engine.
Calculations for specific fuel consumption, exhaust gas flow and temperature after turbine are explained in further chapters.
Wärtsilä Switzerland Ltd C–1 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
C. General engine data
C1.1.1 Rating points R1, R2, R3 and R4
The rating points (R1, R2, R3 and R4) for the Wärtsilä RTA and RT-flex engines are the corner points of the engine rating field (figure C1).
The point R1 represents the nominal maximum continuous rating (MCR). It is the maximum power/speed combination which is available for a particular engine.
The point R2 defines 100 % cent speed, and 70 % power of R1.
The point R3 defines 80 % speed and 80 % power of R1.
The connection R1–R3 is the nominal 100 % line of constant mean effective pressure of R1.
The point R4 defines 80 % speed and 70 % power of R1.
The connection line R2–R4 is the line of 70% power between 80 and 100 % speed of R1.
Rating points Rx can be selected within the entire rating field to meet the requirements of each particular project. Such rating points require specific engine adaptations.
C1.1.2 Influence of propeller revolutions on the power requirement
At constant ship speed and for a given propeller type, lower propeller revolutions combined with a larger propeller diameter increase the total propulsive efficiency. Less power is needed to propel the vessel at a given speed.
The relative change of required power in function of the propeller revolutions can be approximated by the following relation:
Px2Px1 N2N1
Pxj = Propulsive power at propeller revolution Nj.
Nj = Propeller speed corresponding with propulsive power Pxj.
α = 0.15 for tankers and general cargo ships up to 10 000 dwt.
= 0.20 for tankers, bulkcarriers from 10 000 dwt to 30 000 dwt.
= 0.25 for tankers, bulkcarriers larger than 30 000 dwt.
= 0.17 for reefers and container ships up to 3000 TEU.
= 0.22 for container ships larger than 3000 TEU.
This relation is used in the engine selection procedure to compare different engine alternatives and to select optimum propeller revolutions within the selected engine rating field.
Usually, the selected propeller revolution depends on the maximum permissible propeller diameter. The maximum propeller diameter is often determined by operational requirements such as:
•
Design draught and ballast draught limitations.
•
Class recommendations concerning pro-peller/hull clearance (pressure impulse induced by the propeller on the hull).
The selection of main engine in combination with the optimum propeller (efficiency) is an iterative procedure where also commercial considerations (engine and propeller prices) play a great role.
According to the above approximation, when a required power/speed combination is known – for example point Rx1 as shown in figure C1 – a CMCR-line can be drawn which fulfils the ship’s power requirement for a constant speed. The slope of this line depends on the ship’s characteristics (coefficient α). Any other point on this line represents a new power/speed combination, for example Rx2, and requires a specific propeller adaptation.
C1.2 Load range
The load range diagram shown in figure C2 defines the power/speed limits for the operation of the engine. Percentage values are given as explained in section C1.1.1, in practice absolute figures might be used for a specific installation project.
26.14.40 – Issue XII.10 – Rev. 0 C–2 Wärtsilä Switzerland Ltd
Marine Installation Manual
C. General engine data
RT-flex50-D
C1.2.1 Propeller curves
In order to establish the proper location of propeller curves, it is necessary to know the ship’s speed to power response.
The propeller curve without sea margin is for a ship with a new and clean hull in calm water and weather, often referred to as ‘trial condition’.
The propeller curves can be determined by using full scale trial results of similar ships, algorithms developed by maritime research institutes or model tank results. Furthermore, it is necessary to define the maximum reasonable diameter of the propeller which can be fitted to the ship. With this information and by applying propeller series such as the ‘Wageningen’, ‘SSPA’ (Swedish Maritime Research Association), ‘MAU’ (Modified AU), etc., the power/speed relationships can be established and characteristics developed.
The relation between absorbed power and rotational speed for a fixed-pitch propeller can be approximated by the following cubic relation:
3
P2P1 N2N1
in which Pi = propeller power Ni = propeller speed
The propeller curve without sea margin is often called the ‘light running curve’. The nominal propeller characteristic is a cubic curve through the CMCR-point. (For additional information, refer to section C1.2.4 ‘light running margin’.)
C1.2.2 Sea trial power
The sea trial power must be specified. Figure C2 shows the sea trial power to be the power required for point ‘B’ on the propeller curve. Often and alternatively the power required for point ‘A’ on the propeller curve is referred to as ‘sea trial power’.
1
10 100 95 90 80 78.3 70 60 50 40 Engine power [%Rx] 10% EM/OM CMCR (Rx) Engine speed [%Rx] Engine load range Sea trial power 15% SM 70 80 90 9565 104100 propeller curve without SM 3.5% LR A B D
EM engine margin SM sea margin OM operational margin LR light running margin
F10.5248
Fig. C2 Load range limits of an engine corresponding to a specific rating point Rx
C1.2.3 Sea margin (SM)
The increase in power to maintain a given ship’s speed achieved in calm weather (point ‘A’ in figure C2) and under average service condition (point ‘D’), is defined as the ‘sea margin’. This margin can vary depending on owner’s and charterer’s expectations, routes, season and schedules of the ship. The location of the reference point ‘A’ and the magnitude of the sea margin are determined between the shipbuilder and the owner. They form part of the newbuilding contract.
With the help of effective antifouling paints, dry-docking intervals have been prolonged up to 4 or 5 years. Therefore, it is still realistic to provide an average sea margin of about 15 % of the sea trial power, refer to figure C2, unless as mentioned above, the actual ship type and service route dictate
otherwise.
Wärtsilä Switzerland Ltd C–3 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
C. General engine data
C1.2.4 Light running margin (LR)
The sea trial performance (curve ‘a’) in figure C3 should allow for a 4 to 7 % light running of the propeller when compared to the nominal propeller characteristic (the example in figure C3 shows a light running margin of 5 %). This margin provides a sufficient torque reserve whenever full power must be attained under unfavourable conditions. Normally, the propeller is hydrodynamically optimized for a point ‘B’. The trial speed found for ‘A’ is equal to the service speed at ‘D’ stipulated in the contract at 90 % of CMCR.
Engine power
CMCR (Rx)
[%Rx]
100
90
78.3
a
100 D B A 10% EM/OM 15% SM Engine speed [%Rx] propeller curve without SM 5% LR
EM engine margin SM sea margin F10.3148 OM operational margin LR light running margin
Fig. C3 Load diagram for a specific engine showing the corresponding power and speed margins
The recommended light running margin originates from past experience. It varies with specific ship designs, speeds, drydocking intervals, and trade routes.
Please note: it is the shipbuilder’s responsibility to determine the light running margin large enough so that, at all service conditions, the load range limits on the left side of nominal propeller characteristic line are not reached (see section C1.2.6 and figure C4).
Assuming, for example, the following:
•
Drydocking intervals of the ship 5 years.
•
Time between overhauls of the engine 2 years or more.
•
Full service speed must be attainable, without surpassing the torque limit, under less favour-able conditions and without exceeding 100 % mep.
Therefore the ‘light running margin’ required will be 5 to 6 %. This is the sum of the following factors:
1.
1.5–2% influence of wind and weather with an adverse effect on the intake water flow of the propeller. Difference between Beaufort 2 sea trial condition and Beaufort 4–5 average service condition. For vessels with a pronounced wind sensitivity, i.e. containerships or car carriers this value will be exceeded.
2.
1.5–2% increase of ship’s resistance and mean effective wake brought about by:
•
Rippling of hull (frame to frame).
•
Fouling of local, damaged areas, i.e. boot top and bottom of the hull.
•
Formation of roughness under paint.
•
Influence on wake formation due to small changes in trim and immersion of bulbous bow, particularly in the ballast condition.
3.
1% frictional losses due to increase of propeller blade roughness and consequent drop in efficiency, e.g. aluminium bronze propellers:
•
New: surface roughness = 12 microns.
•
Aged: rough surface but no fouling = 40 microns.
26.14.40 – Issue XII.10 – Rev. 0 C–4 Wärtsilä Switzerland Ltd
Marine Installation Manual
C. General engine data
RT-flex50-D
4. 1% deterioration in engine efficiency such as:
•
Fouling of scavenge air coolers.
•
Fouling of turbochargers.
•
Condition of piston rings.
•
Fuel injection system (condition and/or timing).
•
Increase of back pressure due to fouling of the exhaust gas boiler, etc.
C1.2.5 Engine margin (EM) or operational margin (OM)
Most owners specify the contractual ship’s loaded service speed at 85 to 90 % of the contract maximum continuous rating. The remaining 10 to 15 % power can then be utilized to catch up with delays in schedule or for the timing of drydocking intervals. This margin is usually deducted from the CMCR. Therefore, the 100 % power line is found by dividing the power at point ‘D’ by 0.85 to 0.90. The graphic approach to find the level of CMCR is illustrated in figures C2 and C3.
In the examples two current methods are shown. Figure C2 presents the method of fixing point ‘B’ and CMCR at 100 % speed thus obtaining automatically a light running margin B–D of 3.5 %. Figures C3 and C5 show the method of plotting the light running margin from point ‘B’ to point ‘D’or ‘D’ (in our example 5 %) and then along the nominal propeller characteristic to obtain the CMCR-point. In the examples, the engine power at point ‘B’ was chosen to be at 90 % and 85 % respectively.
C1.2.5.1 Continuous service rating (CSR=NOR=NCR)
Point ‘A’ represents power and speed of a ship operating at contractual speed in calm seas with a new clean hull and propeller. On the other hand, the same ship at the same speed requires a power/speed combination according to point ‘D’, shown in figure C4, under service condition with aged hull and average weather. ‘D’ is then the CSR-point.
C1.2.5.2 Contract maximum continuous rating (CMCR = Rx)
By dividing, in our example, the CSR (point D) by 0.90, the 100 % power level is obtained and an operational margin of 10 % is provided (see figure C4). The found point Rx, also designated as CMCR, can be selected freely within the rating field defined by the four corner points R1, R2, R3 and R4 (see figure C1).
C1.2.6 Load range limits
Once an engine is optimized at CMCR (Rx), the working range of the engine is limited by the following border lines, refer to figure C4:
Line 1 is a constant mep or torque line through
CMCR from 100 % speed and power
down to 95 % power and speed.
Line 2 is the overload limit. It is a constant mep line reaching from 100 % power and
93.8 % speed to 110 % power and
103.2 % speed. The latter one is the point of intersection between the nominal propeller characteristic and 110 % power.
Wärtsilä Switzerland Ltd C–5 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
C. General engine data
Line
3
is the 104 % speed limit where an engine
can run continuously. For Rx with reduced speed (NCMCR ≤ 0.98 NMCR) this limit can
be extended to 106 %, however, the
specified torsional vibration limits must not
be exceeded.
Line
4
is the overspeed limit. The overspeed
range between 104 (106) and 108 %
speed is only permissible during sea trials
if needed to demonstrate the ship’s speed
at CMCR power with a light running propeller
in the presence of authorized representatives
of the engine builder. However,
the specified torsional vibration limits must
not be exceeded.
Line
5
represents the admissible torque limit and
reaches from 95 % power and speed to
45 % power and 70 % speed. This represents
a curve defined by the equation:
P2P1 N2N1 2.45
When approaching line 5 , the engine will
increasingly suffer from lack of scavenge
air and its consequences. The area
formed by lines 1 , 3 and 5 represents
the range within which the engine
should be operated. The area limited
by the nominal propeller
characteristic, 100 % power and line 3
is recommended for continuous operation.
The area between the nominal propeller
characteristic and line 5 has to be
reserved for acceleration, shallow water
and normal operational flexibility.
Line 6 is defined by the equation:
2.45
P2P1 N2N1
through 100 % power and 93.8 % speed and is the maximum torque limit in transient conditions. The area above line 1 is the overload
range. It is only allowed to operate engines in that range for a maximum duration of one hour during sea trials in the presence of authorized representatives of the engine builder. The area between lines 5 and 6 and constant torque line (dark area of fig. C4) should only be used for transient conditions, i.e. during fast acceleration. This range is called ‘service range with operational time limit’.
Engine power
[%Rx]
CMCR (Rx)
110
100
95
90
80
78.3
70
60
50
40 65
70
80
90
95
100
104 108
[%Rx]
EM engine margin
SM sea margin
OM operational margin
LR
light running margin
F10.5249
Fig. C4 Load range limits, with the load diagram of an engine corresponding to a specific rating point Rx
103.2
93.8 Engine speed propeller curve without SM 10% EM/OM 15% SM 4 3 1 2 5 6 B A D Engine load range Constant torque
26.14.40 – Issue XII.10 – Rev. 0 C–6 Wärtsilä Switzerland Ltd
Marine Installation Manual
C. General engine data
RT-flex50-D
C1.2.7 Load range with main-engine driven generator
The load range of an engine with main-engine driven generator, whether it is a shaft generator (S/G) mounted on the intermediate shaft or driven through a power take off gear (PTO), is shown by curve ‘c’ in figure C5. This curve is not parallel to the propeller characteristic without main-engine driven generator due to the addition of a constant generator power over most of the engine load. In the example of figure C5, the main-engine driven generator is assumed to absorb 5 % of the nominal engine power.
The CMCR-point is, of course, selected by taking into account the max. power of the generator.
100
85 73.9 CMCR (Rx) 100 D’ B A 90 a c D 10% EM/OM 15% SM Engine power [%Rx] Engine speed [%Rx] propeller curve without SM 5% LR 5% S/G SM sea margin EM engine margin PTO power
OM operational margin LR light running margin S/G shaft generator
F10.3149
Fig. C5 Load range diagram for an engine equipped with a main-engine driven generator, whether it is a shaft generator or a PTO-driven generator
Wärtsilä Switzerland Ltd C–7 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
C. General engine data
C1.2.8 Load range limit with controllable pitch propeller
For controllable pitch propeller (CPP), the load range limit is defined in figure C6.
8
6 75 prohibited operation area area within which the engine should be operated Engine speed [% Rx] Engine power [% Rx] CMCR [Rx]
After starting, the engine is operated at an idle speed of up to 70 % of the rated engine speed with zero pitch. From idle running the pitch is to be increased with constant engine speed up to at least point E, the intersection with the line
6 .
Line 6 is the lower load limit between 70 % speed and 100 % speed, with such a pitch position that at 100 % speed a minimum power of 37 % is reached, point F. It is defined by the following equation:
P2P1 N2N1 3
Along line 8 the power increase from 37 % power (point F) to 100 % power (CMCR) at 100 % speed is the constant speed mode for shaft generator operation, covering electrical sea load with constant frequency.
Line
5 is the upper load limit and corresponds to
the admissible torque limit as defined in section C1.2.6 and shown in figure C4.
The area formed between 70 % speed and 100 % speed and between lines
5 and represents the area within which the engine with CPP has to be operated.
6
Line
7 represents a typical combinator curve for variable speed mode.
F10.5247
Fig. C6 Load range diagram for CPP
26.14.40 – Issue XII.10 – Rev. 0 C–8 Wärtsilä Switzerland Ltd
Marine Installation Manual
C. General engine data
RT-flex50-D
Manoeuvring at nominal speed with low or zero pitch is not allowed. Thus installations with main-engine driven generators must be equipped with a frequency converter when electric power is to be provided (e.g. to thrusters) at constant frequency during manoeuvring. Alternatively, power from auxiliary engines may be used for this purpose.
For test purposes, the engine may be run at rated speed and low load during a one-time period of 15 minutes on testbed (e.g. NOx measurements) and 30 minutes during dock trials (e.g. shaft-generator adjustment) in the presence of authorized representatives of the engine builder. Further requests must be agreed by WCH.
C1.2.8.1 Requirements for control system with CPP
WCH strongly recommends to include CPP control functions into an engine remote control system from an approved supplier (please ask WCH). This ensures, among others, that the requirements of the engine builder are strictly followed.
The following operating modes shall be included in the control system:
• Combinator mode 1
Combinator mode for operation without shaft generator. Any combinator curve including a suitable light running margin may be set within the permissible operating area, typically line 7.
• Combinator mode 2
Optional mode used in connection with shaft generators. During manoeuvring, the combinator curve follows line 6 . At sea the engine is operated between point F and 100 % power (line 8 ) at constant speed.
For manual and/or emergency operation, separate setpoints for speed and pitch are usually provided. At any location allowing such operation, a warning plate must be placed with the following text:
Engine must not be operated continuously with a pitch lower than xx % at any engine speed above xx rpm.
These values (xx) are to be defined according to
the installation data.
The rpm value normally corresponds to 70 % of
CMCR speed, and the pitch to approximately 60 %
of the pitch required for rated power.
In addition, an alarm has to be provided in either
the main-engine safety system or the vessels
alarm and monitoring system when the engine is
operated for more than 3 minutes in the prohibited
operation area. Is the engine operated for more
than 5 minutes in the prohibited operation area, the
engine speed must be reduced to idle speed
(below 70 % speed).
Wärtsilä Switzerland Ltd C–9 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
C. General engine data
C2 Engine data
The engine can be operated in the ambient condition range between reference conditions and design (tropical) conditions.
C2.1 Reference conditions
The engine performance data, like BSFC, BSEF and tEaT and others are based on reference conditions. They are specified in ISO Standard 15550 (core standard) and for marine application in ISO Standard 3046 (satellite standard) as follows:
•
Air temperature before blower 25 °C
•
Engine room ambient air temp. 25 °C
•
Coolant temp. before SAC 25 °C for SW
•
Coolant temp. before SAC 29 °C for FW
•
Barometric pressure 1000 mbar
•
Relative air humidity 30 %
C2.2 Design conditions
The capacities of ancillaries are specified according to ISO Standard 3046-1 (clause 11.4) following the International Association of Classification Societies (IACS) and are defined as design conditions:
•
Air temperature before blower 45 °C
•
Engine ambient air temp. 45 °C
•
Coolant temp. before SAC 32 °C for SW
•
Coolant temp. before SAC 36 °C for FW
•
Barometric pressure 1000 mbar.
•
Relative air humidity 60 %
C2.3 Ancillary system design parameters
The layout of the ancillary systems of the engine bases on the performance of its specified rating point Rx (CMCR). The given design parameters must be considered in the plant design to ensure a proper function of the engine and its ancillary systems.
•
Cylinder water outlet temp. 85 °C
•
Oil temperature before engine 45 °C
•
Exhaust gas back pressure at rated power (Rx) 30 mbar
The engine power is independent from ambient conditions. The cylinder water outlet temperature and the oil temperature before engine are system-internally controlled and have to remain at the specified level.
C2.4 Engine performance data
The calculation of the performance data BSFC, BSEF and tEaT for any engine power and tuning
(e.g. Low-Load Tuning, Delta Tuning) will be done with the help of the winGTD program which can be downloaded from our Licensee Portal.
If needed we offer a computerized information service to analyze the engine’s heat balance and determine main system data for any rating point within the engine rating field. For details of this service please refer to section F1.2.2, ‘Questionnaire for engine data’. The downlodad of the winGTD program is explained in section C7.1.
26.14.40 – Issue XII.10 – Rev. 0 C–10 Wärtsilä Switzerland Ltd
Marine Installation Manual
RT-flex50-D
C. General engine data
C3 Turbocharger and scavenge air cooler
The selection of turbochargers covering the types ABB A100 series and MHI MET MB are shown in figures C8 and C10. The selection of scavenge air coolers follows the demand of the selected turbochargers.
The data can be calculated directly by the winGTDprogram (see section C7.2). Parameters and details of the scavenge air coolers (SAC) are shown in table C1 and figure C7, weights of turbochargers in table C2
Scavenge air cooler parameters for single-stage scavenge air coolers, freshwater Cooler type Design flow Pressure drop (at design flow) Dimension Mass Water [kg/s] Air [kg/s] Water [bar] Air [Pa] [mm] [kg] SAC261 45.8 20.4 1.1 2000 1759 x 1370 x 840 approx. 1650 SAC265 68.3 27.2 1.1 2000 2195 x 1370 x 840 approx. 2100 SAC285 43.1 20.3 1.1 2000 –– x –– x –– approx. ––
Table C1 Scavenge air cooler parameters
422.514/422.600
Cooling water inlet Cooling water outlet Drain Air vent Air flow Direction for removing tube bundle drawn for SAC261 and SAC265
Fig. C7 Scavenge air cooler details
ABBABB
Type Mass [kg]
A165-L approx. 2000
A170-L aprox. 3000
A175-L approx. 4900
MHI
Type Mass [kg]
MET53MB approx. 4100
MET60MB approx. 4500
––––––– –––––––
Table C2 Turbocharger weights
Wärtsilä Switzerland Ltd C–11 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
C. General engine data
C3.1 Turbocharger and scavenge air cooler selection RT-flex50-D TC exh. side (1 x ABB A100-L)
100
95 90 85 80 75 70 65 60 70 75 80 85 90 95 100 Engine speed [% R1] Engine power [% R1] R2R4 R1 R3 1 x A170-L34 1 x SAC261 5RT-flex50-D R1: 8 725 kW / 124 rpm 1 x A170-L35 1 x SAC261 70 75 80 85 90 95 100 Engine speed [% R1] Engine power [% R1] R2R4 R1 R3 1 x A170-L35 1 x SAC261 6RT-flex50-D R1: 10 470 kW / 124 rpm 1 x A175-L32 1 x SAC265
100
95
90
85
80
75
70
65
60
100
95
90
85
80
75
70
65
60
F20.0106
Fig. C8
Approval pending
for ABB A100-L turbochargers.
70
75 80 85 90 95 100 Engine speed [% R1] Engine power [% R1] R2R4 R1 R3 1 x A175-L32 1 x SAC265 7RT-flex50-D R1: 12 215 kW / 124 rpm 1 x A175-L34 1 x SAC265 Engine power
100
95
90
85
80
75
70
65
60
Turbocharger and scavenge air cooler selection (1 x ABB A100-L turbocharger)
70
75 80 85 90 95 100 Engine speed [% R1] R2R4 R1 R3 not available with 1 turbocharger 8RT-flex50-D R1: 13 960 kW / 124 rpm
[% R1]
26.14.40 – Issue XII.10 – Rev. 0 C–12 Wärtsilä Switzerland Ltd
Marine Installation Manual
C. General engine data
RT-flex50-D
RT-flex50-D TC exh. side (2 x ABB 100-L)
100
95 90 85 80 75 70 65 Engine speed Engine power [% R1] R2R4 R1 R3 5RT-flex50-D R1: 8 725 kW / 124 rpm not available with 2 turbochargers 100 95 90 85 80 75 70 65 Engine speed Engine power [% R1] R2R4 R1 R3 6RT-flex50-D R1: 10 470 kW / 124 rpm not available with 2 turbochargers
60
60
[% R1]
[% R1]
70 75 80 85 90 95100 70 75 80 85 90 95100
Approval pending
for ABB A100-L turbochargers.
75
80 85 90 95 100 Engine speed [% R1] Engine power [% R1] R2R4 R1 R3 2 x A165-L32 2 x SAC261 7RT-flex50-D R1: 12 215 kW / 124 rpm 2 x A165-L34 2 x SAC261
100
95
90
85
80
75
70
65
60
70
Engine power
100
95
90
85
80
75
70
65
60
70
75 80 85 90 95 100 Engine speed [% R1] [% R1] R2R4 R1 R3 8RT-flex50-D R1: 13 960 kW / 124 rpm 2 x A165-L35 2 x SAC261 2 x A165-L34 2 x SAC261 2 x A170-L34 2 x SAC261
F20.0107
Fig. C9 Turbocharger and scavenge air cooler selection (2 x ABB A100-L turbochargers)
Wärtsilä Switzerland Ltd C–13 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
C. General engine data
RT-flex50-D TC exh. side (1 x MHI MET MB)
Engine power
100
[% R1]
R2R4 R1 R3 5RT-flex50-D R1: 8 725 kW / 124 rpm 1 x MET53MB 1 x SAC261 100
95
95
90
90
85
85
80
80
75
75
70
70
65
65
Engine speed
60
60
[% R1]
70 75 80 85 90 95100
Engine power
[% R1]
R2R4 R1 R3 7RT-flex50-D R1: 12 215 kW / 124 rpm 1 x MET60MB 1 x SAC265 [% R1]
100
100
95
95
90
90
85
85
80
80
75
75
70
70
65
65
Engine speed
60
60
[% R1]
70 75 80 85 90 95100 70
F20.0108
Fig. C10 Turbocharger and scavenge air cooler selection (1 x MHI MET MB turbocharger)
70
Approval pending
for MHI MET-MB turbochargers.
Engine power
75
80 85 90 95 100 Engine speed [% R1] Engine power [% R1] R2R4 R1 R3 1 x MET53MB 1 x SAC261 6RT-flex50-D R1: 10 470 kW / 124 rpm 1 x MET60MB 1 x SAC265
R1 R2
Engine speed [% R1]
75
80 85 90 95 100 R4 R3 8RT-flex50-D R1: 13 960 kW / 124 rpm not available with 1 turbocharger
26.14.40 – Issue XII.10 – Rev. 0 C–14 Wärtsilä Switzerland Ltd
Marine Installation Manual RT-flex50-D
C. General engine data
RT-flex50-D TC exh. side (2 x MHI MET MB)
60
60
[% R1]
70 75 80 85 9095100 70 75
Approval pending
for MHI MET-MB turbochargers.
Engine power Engine power [% R1]
100
[% R1]
R2R4 R1 R3 7RT-flex50-D R1: 12 215 kW / 124 rpm not available with 2 turbochargers 100
95
95
90
90
85
85
80
80
75
75
70
70
65
65
Engine speed
60
60
[% R1]
70 75 80 85 90 95100 70
F20.0108
100
95 90 85 80 75 70 65 Engine speed Engine power [% R1] R2R4 R1 R3 5RT-flex50-D R1: 8 725 kW / 124 rpm not available with 2 turbochargers 100 95 90 85 80 75 70 65 Engine speed Engine power [% R1] R2R4 R1 R3 6RT-flex50-D R1: 10 470 kW / 124 rpm not available with 2 turbochargers
80 8590
75
80 85 90 95 100 R4 R3 8RT-flex50-D R1: 13 960 kW / 124 rpm 2 x MET53MB 2 x SAC261
[% R1]
95 100
R1
R2
Engine speed [% R1]
Fig. C11 Turbocharger and scavenge air cooler selection (2 x MHI MET MB turbochargers)
Wärtsilä Switzerland Ltd C–15 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
C. General engine data
RT-flex50-D TC aft end (1 x ABB A100-L or MHI MET MB) Engine power
Engine power
100
R1 100
95
70
75 80 85 90 95 100 Engine speed [% R1] [% R1] R2R4 R3 1 x A170-L34 1 x SAC285 5RT-flex50-D R1: 8 725 kW / 124 rpm 1 x A170-L35 1 x SAC285 95
90
90
85
85
80
80
75
75
70
70
65
65
60
60
[% R1]
Engine speed
[% R1] R2R4 R1 R3 5RT-flex50-D R1: 8 725 kW / 124 rpm 1 x MET53MB 1 x SAC285
70 75 80 85 90 95100
Approval pending
for ABB A100-L turbochargers
and for
MHI MET MB turbochargers.
Data for Wärtsilä 6&7RT-flex50-D TC aft end on request.
Fig. C12 Turbocharger and scavenge air cooler selection for Wärtsilä 5RT-flex50-D TC aft end
26.14.40 – Issue XII.10 – Rev. 0 C–16 Wärtsilä Switzerland Ltd
Marine Installation Manual
RT-flex50-D C. General engine data
C4 Auxiliary blower
For manoeuvring and operating at low powers,
electrically driven auxiliary blowers must be used
to provide sufficient combustion air.
Table C3 shows the number of blowers required.
Number of cylinders
5
6
7
8
Number of auxiliary air blowers required
2
Table C3 Number of auxiliary blowers per engine
C5 Electrical power requirement in [kW]
Power requirement [kW]
Electrical power consumers
Supply voltageSupply voltage
referring to numbers of cylinders
5
6
7
8
Auxiliary blowers 1) TC exh. side
400/440 V / 50/60 Hz
2 x 29
2 x 31
2 x 36
2 x 46
Auxiliary blowers 1) TC aft end
400/440 V / 50/60 Hz
2 x 26
not available
400 V / 50 Hz / 1500 rpm
1.8
Turning gear
440 V / 60 Hz / 1800 rpm
2.2
Cylinder lubrication CLU-3 2)
3)
400/440 V / 50/60 Hz
1.8
Service pump
400/440 V / 50/60 Hz
3.0
Servo automatic filter
400/440 V / 50/60 Hz
0.15
WECS power supply, box E85 2)
230 V / 50/60 Hz single phase
1.2
1.4
1.7
1.8
Remote control system
24 VDC UPS
acc. to maker specifications
Additional monitoring devices (e.g. oil mist detector etc.)
acc. to maker specifications
acc. to maker specifications
Remark: 1) Minimal installed electric motor power (shaft) is indicated. The actual electric power requirement depends
on the size, type and voltage/frequency of the installed electric motor. Direct starting or Star-Delta starting
to be specified when ordering.
2) Two redundant power supplies from different feeder panels required; indicated power for each power supply. 3) CLU-3 is available as an option.
Table C4 Electrical power consumers
C6 Pressure and temperature ranges
Table C5 (on the next page) represents a summary obtained by adding the pressure losses in the pip-of the required pressure and temperature ranges ing system, filters, coolers, valves, etc., and the at continuous service rating (CSR). The gauge vertical level pressure difference between pump pressures are measured about 4m above the suction and pressure gauge to the values in the crankshaft centre line. The pump delivery head is table on the next page.
Wärtsilä Switzerland Ltd C–17 26.14.40 – Issue XII.10 – Rev. 0
Medium
(single-stage SAC)
(if steel spring damper is used)
ABB A100-L
ABB A100-L
Air
Marine Installation Manual
RT-flex50-D
C. General engine data
SystemSystem
Location of measurement measurement
Gauge pressure limit values [bar]
Temperature limit values [°C]
Min
Max
Min
Max
Diff
Cylinder cooling
Inlet engine
2.0
4.0
65
–
max 15
Fresh water
Outlet each cylinder
–
–
80
90
Scavenge air cooling LScavenge L T circuitT circuit
Inlet cooler
2.0
4.0
25
36
1) 1)
Outlet cooler
–
–
–
–
Servo oil
Servo oil pump inlet
4.0
6.5
–
–
–
Main bearing oil
Supply
5.0
6.0
40
50
–
Piston cooling oil
Inlet
5.0
6.0
40
50
30
Outlet
–
–
–
80
Thrust bearing
Outlet
–
–
–
65
–
Torsional vibration damper orsional T
Supply
5.0
6.0
–
–
–
Inlet casing
1.0
–
–
–
–
Lubricating oilLubricating oil
Integrated axial vibration damper (detuner)
Supply
5.0
6.0
–
–
–
Damp. chamber
1.7
–
–
–
–
Turbocharger bearing oil (on engine lub. system) urbocharger urbocharger bearing oil (on engine lub. system) urbocharger bearing oil (on engine lub. system) T
Inlet
1.0
2.5
–
–
–
Outlet
–
–
–
110
–
Turbocharger bearing oil (with separate lub. system) urbocharger urbocharger bearing oil (with separate lub. system) urbocharger bearing oil (with separate lub. system) T
Inlet
1.3
2.5
–
85
–
Outlet
–
–
–
130
–
TTurbocharger bearing oil (MHI MET)
Inlet
0.7
1.5
–
–
–
urbocharger Outlet
–
–
–
85
–
Fuel oil
Booster (supply unit)
Inlet
7.0 2)
10.0 3)
–
150
–
After retaining valve (supply unit)
Return
3.0
5.0
–
–
–
Cooler
After each cooler
–
–
25
60
–
Intake from engine room (pressure drop, max)
Air filter / Silencer
max 10 mbar
–
–
–
Scavenge airScavenge air
Intake from outside (pressure drop, max)
Ducting and filter
max 20 mbar
–
–
–
Cooling (pressure drop)
New SAC
max 30 mbar
–
–
–
Fouled SAC
max 50 mbar
–
–
–
Starting air
Engine inlet
12
25 or 30
–
–
–
Control air
Engine inlet
6.0
7.5
–
–
–
normal 6.5
Air spring air for exhaust valve
Main distributor
6.0
7.5
–
–
–
normal 6.5
–
–
–
ReceiverReceiver
After each cylinder
–
–
–
515
Deviation 50 4)
Exhaust gasExhaust gas
Turbine inlet
–
–
–
515
–
Manifold after turbochargerManifold turbocharger
Design maximum
30 mbar
–
–
–
Fouled maximum
50 mbar
–
–
–
Remark: 1) The water flow has to be within the prescribed limits.
2) At 100 % engine power.
3) At stand-by condition; during commissioning of the fuel oil
system the fuel oil pressure is adjusted to 10 bar.
4) Max. deviation of the temperature among the cylinders.
Table C5 Pressure and temperature ranges
26.14.40 – Issue XII.10 – Rev. 0 C–18 Wärtsilä Switzerland Ltd
Marine Installation Manual
C. General engine data
RT-flex50-D
C7 General Technical Data – winGTD
The purpose of this program is to calculate the heat balance of a Wärtsilä two-stroke diesel engine for a given project. Various cooling circuits can be taken in account, temperatures and flow rates can be manipulated on line for finding the most suitable cooling system. This software is intended to provide the information required for the project work of marine propulsion plants. Its content is subject to the understanding that any data and information herein have been prepared with care and to the best of our knowledge. We do not, however, assume any liability with regard to unforeseen variations in accuracy thereof or for any consequences arising therefrom.
C7.1 Availability of winGTD
The winGTD is available:
– as download from our Licensee Portal.
C7.1.1 Download from Licensee Portal
1.
Open the ’Licensee Portal’ and go to: ’Project Tools & Documents’ – ’winGTD’.
2.
Click the link and follow the instructions.
The amendments and how the current version
differs from previous versions are explaineded on
the Licensee Portal.
Furthermore this information is contained in the
winGTD program itself. Menu:
’Help’ – ’version information’.
C7.2 Using winGTD
C7.2.1 Start
After starting winGTD by double-clicking winGTD icon, click on ’Start new Project’ button on ‘Welcome’ screen and specify desired engine type in appearing window (fig. C13):
Fig.
C13 winGTD: Selection of engine window
Double-click on selected engine type or click the ’Select’ button to access the main window (fig. C14) and select the particular engine according to the number of cylinders (eg. 7RTflex-50-D).
C7.2.2 Data input
In the main window (fig. C14) enter the desired power and speed to specify the engine rating. The rating point must be within the rating field. The shaft power can either be expressed in units of kW or bhp.
Wärtsilä Switzerland Ltd C–19 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
C. General engine data
Fig.
C14 winGTD: Main window
Further input parameters can be entered in sub-panels to be accessed by clicking on tabs ‘Engine Spec.’ (eg. for turbocharger selection), ‘Cooling’, ‘Lub. Oil’, ‘Fuel Oil’, ‘Starting Air’ or ‘Exhaust Gas’ relating to the relevant ancillary systems.
C7.2.3 Output results
Clicking the ‘Start Calculation’ button (fig. C14) initiates the calculation with the chosen data to determine the temperatures, flows of lubricating oil and cooling water quantities. Firstly the ‘Engine performance data’ window (fig. C15) is displayed on the screen. To see further results, click the appropriate button in the tool bar or click the ‘Show results’ menu option in the menu bar.
To print the results click the button or click the button for export to a ASCII file, both in the tool bar.
Fig. C15 winGTD: General technical data
C7.2.4 Service conditions
Click the button ‘Service Conditions’ in the main window (fig. C14) to access the option window (fig. C16) and enter any ambient condition data deviating from design conditions.
Fig.
C16 winGTD: Two-stroke engine propulsion
The calculation is carried out with all the relevant design parameters (pump sizes etc.) of the ancillaries set at design conditions.
C7.2.5 Saving a project
To save all data belonging to your project choose ‘Save as...’ from the ‘File’ menu. A windows ’Save as...’ dialogue box appears.
Type a project name (winGTD proposes a three-character suffix based on the program you have selected) and choose a directory location for the project. Once you have specified a project name and selected the desired drive and directory, click the ‘Save’ button to save your project data.
26.14.40 – Issue XII.10 – Rev. 0 C–20 Wärtsilä Switzerland Ltd
Marine Installation Manual
D. Engine dynamics
RT-flex50-D
D1 Vibration aspects
As a leading designer and licensor we are concerned that satisfactory vibration levels are obtained with our engine installations. The assessment and reduction of vibration is subject to continuing research. Therefore, we have developed extensive computer software, analytical procedures and measuring techniques to deal with this subject.
For successful design, the vibration behaviour needs to be calculated over the whole operating range of the engine and propulsion system. The following vibration types and their causes are to be considered:
–
External mass forces and moments.
–
Lateral engine vibration.
–
Longitudinal engine vibration.
–
Torsional vibration of the shafting.
–
Axial vibration of the shafting.
D1.1 External forces and moments
In the design of the Wärtsilä RT-flex50-D engine free mass forces are eliminated and unbalanced external moments of first, second and fourth order are minimized. However, five- and six-cylinder engines generate second order unbalanced vertical moments of a magnitude greater than those encountered with higher numbers of cylinders. Depending on the ship’s design, the moments of fourth order have to be considered too.
Under unfavourable conditions, depending on hull structure, type, distribution of cargo and location of the main engine, the unbalanced moments of first, second and fourth order may cause unacceptable vibrations throughout the ship and thus call for countermeasures.
Figure D1 shows the external forces and moments acting on the engine.
External forces and moments due to the reciprocating and rotating masses (see table D1):
F1V: resulting first order vertical force. F1H: resulting first order horizontal force. F2V: resulting second order vertical force. F4V: resulting fourth order vertical force. M1V: first order vertical mass moment. M1H: first order horizontal mass moment. M2V: second order vertical mass moment. M4V: fourth order vertical mass moment.
All Wärtsilä RT-flex50-D engines have no free mass forces.
F10.5173
Fig. D1 External forces and moments
Forces
and moments due to reciprocating and rotating masses + + – M1H F1H F1V, F2V, F4V M1V, M2V, M4V
Wärtsilä Switzerland Ltd D–1 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
D. Engine dynamics
D1.1.1 Balancing free first order moments
Standard counterweights fitted to the ends of the crankshaft reduce the first order mass moments to acceptable limits. However, in special cases nonstandard counterweights can be used to reduce either M1V or M1H, if needed.
D1.1.2 Balancing free second order moments
The second order vertical moment (M2V) is higher on five- and six-cylinder engines compared with 7–8-cylinder engines; the second order vertical moment being negligible for the 7–8-cylinder engines. Since no engine-fitted 2nd order balancer is available, Wärtsilä Switzerland Ltd. recommends for five- and six-cylinder engines to install an electrically driven compensator on the ship’s structure (figure D2) to reduce the effects of the second order moments to acceptable values.
If no experience is available from a sister ship, it is advisable to establish at the design stage, what form the ship’s vibration will be. Table D1 assists in determining the effect of installing the Wärtsilä 5RT-flex50-D and 6RT-flex50-D engines.
However, when the ship’s vibration pattern is not known at the early stage, an external electrically compensator can be installed later, should disturbing vibrations occur; provision should be made for this countermeasure. Such a compensator is usually installed in the steering compartment, as shown in figure D2. It is tuned to the engine operating speed and controlled accordingly.
Electrically driven 2nd order compensator
L
M2V F2V M2V = F2V L
F10.5218
Fig. D2 Locating electrically driven compensator
Suppliers of electrically driven compensators
Gertsen & Olufsen AS Savsvinget 4 DK-2970 Hørsholm Tel. +45 45 76 36 00 Denmark Fax +45 45 76 17 79 www.gertsen-olufsen.dk
Nishishiba Electric Co., Ltd Shin Osaka Iida Bldg. 5th Floor 1-5-33, Nishimiyahara, Yodogawa-ku Osaka Tel. +81 6 6397 3461 532-0004 Japan Tel. +81 6 6397 3475 www.nishishiba.co.jp
26.14.40 – Issue XII.10 – Rev. 0 D–2 Wärtsilä Switzerland Ltd
Marine Installation Manual
D. Engine dynamics
RT-flex50-D
D1.1.3 Power related unbalance (PRU)
The so-called Power Related Unbalance (PRU) values can be used to evaluate if there is a risk that free external mass moments of 1st and 2nd order may cause unacceptable hull vibrations, see figure D3.
250
200
150
100
50
Free external mass moments Power Related Unbalance (PRU) at R1 rating PRU = external moment [Nm] engine power [kW] = [Nm/kW] M1V M1H M2V No engine-fitted 2nd order balancer available. If reduction of M2v is needed, an external compensator has to be applied.
A
B
C
PRU [Nm/kW]
0
5RT-flex50-D 6RT-flex50-D 7RT-flex50-D 8RT-flex50-D (TC exh. side only)
A-range: balancing countermeasure is likely needed. B-range: balancing countermeasure is unlikely needed. C-range: balancing countermeasure is not relevant.
F10.5245
Fig. D3 Free external mass moments
The external moments M1 and M2 given in table D1 are related to R1 speed. For other engine speeds, the corresponding external moments are calculated with the following formula:
MRx = MR1 (nRx/nR1)2
Wärtsilä Switzerland Ltd D–3 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
D. Engine dynamics
D1.2 Lateral engine vibration (rocking)
The lateral components of the forces acting on the crosshead induce lateral rocking depending on the number of cylinders and firing order. These forces may be transmitted to the engine-room bottom structure. From there hull resonance or local vibrations in the engine room may be excited.
There are two different modes of lateral engine vibration, the so-called ‘H-type’ and ‘X-type’, please refer to figure D4.
The ‘H-type’ lateral vibrations are characterized by a deformation where the driving and free end side of the engine top vibrate in phase as a result of the lateral guide force FL and the lateral H-type moment. The torque variation (ΔM) is the reaction moment to MLH.
The ‘X-type’ lateral vibrations are caused by the resulting lateral guide force moment MLX. The driving- and free-end side of the engine top vibrate in counterphase.
Table D1 gives the values of resulting lateral guide forces and moments of the relevant orders.
The amplitudes of the vibrations transmitted to the hull depend on the design of the engine seating, frame stiffness and exhaust pipe connections. As the amplitude of the vibrations cannot be predicted with absolute accuracy, the support to the ship’s structure and space for installation of lateral stays should be considered in the early design stages of the engine-room structure. Please refer to tables D2 to D4, countermeasures for dynamic effects.
F
L resulting guide force MLH resulting lateral H-type moment
MLX resulting lateral X-type moment
F10.5172
Fig. D4 External forces and moments
26.14.40 – Issue XII.10 – Rev. 0 D–4 Wärtsilä Switzerland Ltd
Marine Installation Manual
D. Engine dynamics
RT-flex50-D
D1.2.1 Reduction of lateral vibration
D1.2.1.1 Engine stays
Fitting of lateral stays between the upper platform level and the hull reduces transmitted vibration and lateral rocking (see figures D5 and D6). Two stay types can be considered:
–
Hydraulic stays: installed on the exhaust and on the fuel side of the engine (lateral).
–
Friction stays: installed on the engine exhaust side (lateral).
Hydraulic stays
exhaust
side fuel side Friction stays
Drawn
for 5–8RT-flex50-D TC exh. side.
For 5–7RT-flex50-D TC aft end, the same
F10.5278/1 installation concept is applicable. Fig. D5 General arrangement of lateral stays
For installation data concerning lateral engine stays, please refer to section H8.
longitudinal
lateral Free end Driving end
F10.5278/2
Fig. D6 General arrangement of friction stays
D1.2.1.2 Electrically driven compensator
If for some reason it is not possible to install lateral stays, an electrically driven compensator can be installed which is able to reduce the lateral engine vibrations and their effect on the ship’s superstructure. It is important to note that only one harmonic excitation can be compensated at a time and in the case of an ‘X-type’ vibration mode, two compensators, one fitted at each end of the engine top are necessary.
Wärtsilä Switzerland Ltd D–5 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
D. Engine dynamics
D1.3 Longitudinal engine vibration (pitching)
In some cases with five-cylinder Wärtsilä RT-flex engines, specially those coupled to very stiff intermediate and propeller shafts, the engine foundation can be excited at a frequency close to the full load speed range resonance, leading to increased axial (longitudinal) vibration at the engine top and
D1.4 Torsional vibration
Torsional vibrations are generated by gas and inertia forces as well as by the irregularity of the propeller torque. It does not cause hull vibration (except in very rare cases) and is not perceptible in service, but causes additional dynamic stresses in the shafting.
The shafting system comprising crankshaft, propulsion shafting, propeller, engine running gear, flexible couplings and power take off (PTO), as any system capable of vibrating, has resonant frequencies.
If any source generates excitation at the resonant frequencies the torsional loads in the system reach maximum values. These torsional loads have to be limited, if possible by design, i.e., optimizing shaft diameters and flywheel inertia. If the resonance still remains dangerous, its frequency range (critical speed) has to be passed through rapidly (barred-speed range) provided that the corresponding limits for this transient condition are not exceeded, otherwise other appropriate countermeasures have to be taken.
as a result of this to vibrations in the ship’s superstructure (refer to section D1.5 ‘Axial vibration’). In order to prevent this vibration, stiffness of the double-bottom structure should be as high as possible.
The amplitudes and frequencies of torsional vibration must be calculated at the design stage for every engine installation. The calculation normally requires approval from the relevant classification society and may require verification by measurement on board ship during sea trials. All data required for torsional vibration calculations should be made available to the engine supplier at an early design stage (see section D3 ‘Order forms for vibration calculations’).
26.14.40 – Issue XII.10 – Rev. 0 D–6 Wärtsilä Switzerland Ltd
Marine Installation Manual
RT-flex50-D
D. Engine dynamics
D1.4.1 Reduction of torsional vibration
Excessive torsional vibration can be reduced, shifted or even avoided by installing a heavy flywheel at the driving end and/or a tuning wheel at the free end or a torsional vibration damper at the free end of the crankshaft. Such dampers reduce the level of torsional stresses by absorbing a part of their energy. Where low energy torsional vibrations have to be reduced, a viscous damper, can be installed, please refer to figure D7. In some cases the torsional vibration calculation shows that an additional oil-spray cooling for the viscous damper is needed. In these cases the layout has to be in accordance with the recommendations of the damper manufacturer and our design department.
Inertia ring Cover Silicone fluid
Casing
F10.1844 Fig. D7 Vibration damper (Viscous type)
For high energy vibrations, i.e., for higher additional torque levels that can occur with five- and six-cylinder engines, a spring damper, with its higher damping effect may have to be considered, please refer to figure D8. This damper has to be supplied with oil from the engine’s lubricating oil system, and depending on the torsional vibration energy to be absorbed can dissipate up to approximately 50 kW energy (depends on number of cylinders). The oil flow to the damper should be approximately 6 to 12 m3/h, but an accurate value will be given after the results of the torsional vibration calculation are known.
Springs
Lub. oil supply Intermediate pieces
F10.1845
Fig. D8 Vibration damper (Geislinger type)
Wärtsilä Switzerland Ltd D–7 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
D. Engine dynamics
D1.5 Axial vibration
The shafting system formed by the crankshaft and propulsion shafting, is able to vibrate in the axial direction, the basic principle being the same as described in section D1.4 ‘Torsional vibration’. The system, made up of masses and elasticities, will feature several resonant frequencies. These will result in axial vibration causing excessive stresses in the crankshaft if no countermeasures are taken. Strong axial vibration of the shafting can also lead to excessive axial (or longitudinal) vibration of the engine, particularly at its upper part.
The axial vibrations of installations depend mainly on the dynamical axial system of the crankshaft, the mass of the torsional damper, free-end gear (if any) and flywheel fitted to the crankshaft. Additionally, there can be a considerable influence of the torsional vibrations to the axial vibrations. This influence is called the coupling effect of the torsional vibrations.
It is recommended that axial vibration calculations are carried out at the same time as the torsional vibration calculation. In order to consider the coupling effect of the torsional vibrations to the axial vibrations, it is necessary to use a suitable coupled axial vibration calculation method.
D1.5.1 Reduction of axial vibration
In order to limit the influence of the axial excitations and reduce the level of vibration, all RT-flex50-D engines are equipped as standard with an integrated axial damper mounted at the forward end of the crankshaft, please refer to figure D9.
The axial damper sufficiently reduces the axial vibrations in the crankshaft to acceptable values. No excessive axial vibrations should occur on either the crankshaft nor the upper part of the engine.
The integrated axial damper does not affect the external dimensions of the engine. It is connected to the main lubricating oil circuit. An integrated monitoring system continuously checks the correct operation of the axial damper.
350.718c
Axial damper Main bearing
Fig. D9 Axial damper (detuner)
26.14.40 – Issue XII.10 – Rev. 0 D–8 Wärtsilä Switzerland Ltd
Marine Installation Manual
D. Engine dynamics
RT-flex50-D
D1.6 Hull vibration
The hull and accommodation area are susceptible to vibration caused by the propeller, machinery and sea conditions. Controlling hull vibration is achieved by a number of different means and may require fitting mass moment compensators, lateral stays, torsional damper and axial damper. Avoiding disturbing hull vibration requires a close cooperation between the propeller manufacturer, naval architect, shipyard and engine builder. To enable Wärtsilä Switzerland Ltd to provide the most accurate information and advice on protecting the installation and vessel from the effects of plant vibration, please complete the order forms as given in section D3 and send it to the address given.
Wärtsilä Switzerland Ltd D–9 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
D. Engine dynamics
D1.7 External forces and moments
Please note: Data in table D1 refer to Tier I. Tier II data will be similar. Available on request.
Engine type: Wärtsilä RT-flex50-D Number of cylinders Rating R1: 1745 kW/cyl. at 124 rpm Engine power kW
5 8 725
6 10 470
7 12 215
8 13 960
Mass moments / Forces Free forces
F1V [kN]
0
0
0
0
F1H [kN]
0
0
0
0
F2V [kN]
0
0
0
0
F4V [kN] External moments 1)
0
0
0
0
M1V [kNm]
114
0
241
227
M1H [kNm]
114
0
105
227
M2V [kNm]
1349
938
272
0
M4V [kNm]
8
65
185
75
Lateral H-moments MLH 2) 3)
Order 1 [kNm]
0
0
0
0
Order 2 [kNm]
0
0
0
0
Order 3 [kNm]
0
0
0
0
Order 4 [kNm]
0
0
0
0
Order 5 [kNm]
810
0
0
0
Order 6 [kNm]
0
591
0
0
Order 7 [kNm]
0
0
459
0
Order 8 [kNm]
0
0
0
311
Order 9 [kNm]
0
0
0
0
Order 10 [kNm]
61
0
0
0
Order 11 [kNm]
0
0
0
0
Order 12 [kNm]
0
11
0
0
Lateral X-moments MLX 3)
Order 1 [kNm]
92
0
55
184
Order 2 [kNm]
95
66
19
0
Order 3 [kNm]
86
155
169
217
Order 4 [kNm]
30
234
665
270
Order 5 [kNm]
0
0
50
633
Order 6 [kNm]
12
0
7
0
Order 7 [kNm]
93
0
0
17
Order 8 [kNm]
52
36
3
0
Order 9 [kNm]
3
51
6
5
Order 10 [kNm]
0
12
34
0
Order 11 [kNm]
1
0
13
17
Order 12 [kNm]
2
0
0
2
Torque variation (Synthesis value) [kNm]
834
603
468
318
Remarks: 1) The external moments M1 and M2 are related to R1 speed. For other engine speeds the corresponding external moments are calculated with the relation: MRx = MR1 (nRx/nR1)2. No engine-fitted 2nd order balancer available. If reduction on M2v is needed, an external compensator has to be applied.
2) The resulting lateral guide force can be calculated as follows: FL = MLH 0.324 [kN].
3) The values for other engine ratings are available on request.
— Crankshaft type: forged. Table D1 External forces and moments
26.14.40 – Issue XII.10 – Rev. 0 D–10 Wärtsilä Switzerland Ltd
Marine Installation Manual
RT-flex50-D D. Engine dynamics
D1.8 Summary of countermeasures for dynamic effects
The following tables indicate where special attention is to be given to dynamic effects and the countermeasures required to reduce them.
External mass moments
Number of cylinders
2nd order compensator
2)
5
balancing countermeasure is likely needed 1)
A
6
balancing countermeasure is unlikely needed 1)
B
7
balancing countermeasure is not relevant
C
8
balancing countermeasure is not relevant
C
(TC exh. side only)
Remarks: 1) No engine-fitted 2nd order balancer available.
If reduction on M2v is needed, an external compensator has to be applied.
2) Refer also to figure D3
Table D2 Countermeasures for external mass moments
Lateral and longitudinal rocking
Number of cylinders
Lateral stays
Longitudinal stays
5
A
B
6
B
C
7
C
C
8
A C
(TC exh. side only)
Remarks: A: The countermeasure indicated is needed.
B: The countermeasure indicated may be needed and provision for the corresponding
countermeasure is recommended.
C: The countermeasure indicated is not needed.
Table D3 Countermeasures for lateral and longitudinal rocking
Torsional vibration & axial vibration
Where installations incorporate PTO arrangements further investigation is required and Wärtsilä Switzerland Ltd, Winterthur, should be contacted.
Number of cylinders
Torsional vibrations
Axial vibrations
5–8 (TC exh. side) 5–7 (TC aft end)
Detailed calculations have to be carried out for every installation, countermeasures to be selected accordingly (shaft diameter, critical or barred speed range, flywheel, tuning wheel, damper).
An integrated axial damper is fitted as standard to reduce the axial vibration in the crankshaft. However, the effect of the coupled axial vibration to the propulsion shafting components should be checked by calculation.
Table D4 Countermeasures for torsional & axial vibration
Wärtsilä Switzerland Ltd D–11 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
D. Engine dynamics
D2 System dynamics
A modern propulsion plant with the RT engine may include a main-engine driven generator. This element is connected by clutches, gears, shafts and elastic couplings. Under transient conditions massive perturbations, due to changing the operating point, loading or unloading generators, engaging or disengaging a clutch, cause instantaneous dynamic behaviour which weakens after a certain time (or is transient). Usually the transfer from one operating point to another is monitored by a control system in order to allow the plant to adapt safely and rapidly to the new operating point (engine speed control and propeller speed control).
Simulation is an opportune method for analysing the dynamic behaviour of a system subject to heavy perturbations or transient conditions. Mathematical models of several system components such as clutches and couplings have been determined and programmed as library blocks to be used with a simulation program. With this program it is possible to check, for example, if an elastic coupling will be overloaded during engine start, or to optimize a clutch coupling characteristic (engine speed before clutching, slipping time, etc.), or to adjust the speed control parameters.
This kind of study should be requested at an early stage of the project if some special specification regarding speed deviation and recovery time, or any special speed and load setting programs have to be fulfilled.
Wärtsilä Switzerland Ltd would like to assist if you have any questions or problems relating to the dynamics of RT engines. Please describe the situation and send or fax the completed relevant order form given in the next section D3. We will provide an answer as soon as possible.
D3 Order forms for vibration calculations and simulation
For system dynamics and vibration analysis, please send or fax a copy of the completed relevant forms to the following address:
Wärtsilä Switzerland Ltd
Dept. 10189 ‘Engine and System Dynamics’ PO Box 414 CH-8401 Winterthur Switzerland Fax: +41-52-262 07 25 Minimum required data needed for provisional calculation are highlighted in the forms (tables D5 to D8) as follows:
26.14.40 – Issue XII.10 – Rev. 0 D–12 Wärtsilä Switzerland Ltd
Marine Installation Manual
D. Engine dynamics
RT-flex50-D
D3.1 Marine installation Torsional Vibration Calculation
Client Information Name: Phone: Order Date: Order deadline: Project Project name:
Shipyard: Hull No.: Classification society:
Engine Engine type: Engine power: kW Engine speed: rpm Rotation: clockwise anti-clockwise Engine tuning (RT-flex): Standard DeltaTuning Barred speed range accepted: Y N if yes, in which speed range: rpm Shafting Intermediate shaft diameter: mm Propeller shaft diameter: mm Intermediate shaft length: mm Propeller shaft length: mm Intermediate shaft UTS: N/mm2 Propeller shaft UTS: N/mm2
If possible, a drawing or sketch of the propulsion shafting should be enclosed. In case the installation consists of a CP-Propeller, a detailed drawing of the oil-distribution shaft is needed.
Propeller
Type:Diameter:
m
Number of blades: Mass:
kg
Mean pitch: Inertia in air:
m kgm2
Expanded area blade ratio: Inertia with entr. water:
kgm2
In case of a CP-Propeller, the inertia in water for full pitch has to be given and if possible, the inertia of the entrained water depending on the pitch to be enclosed.
PTO PTO-Gear
Type: Manufacturer:
Free end gear (RTA)
Tunnel gear
Camshaft gear (RTA)
Shaft generator
Detailed drawings with the gearwheel inertias and gear ratios to be enclosed.
FP CP 4 5 6
PTO-Clutches/Elastic couplings
The arrangement and the type of couplings to be enclosed.
PTO-Generator Manufacturer: Service speed range: rpm
Generator speed: rpm Rated voltage:
Rated apparent power: kVA Grid frequency: Hz
Rotor inertia: kgm2 Power factor cos ϕ:
Frequency control system: No Thyristor If possible, drawing of generator shaft to be enclosed Minimum required data needed for provisional calculation.
Constant speed gear
Table D5 Marine installation Torsional Vibration Calculation
Wärtsilä Switzerland Ltd D–13 26.14.40 – Issue XII.10 – Rev. 0
V
Marine Installation Manual
RT-flex50-D
D. Engine dynamics
D3.2 Testbed installation Torsional Vibration Calculation
Client Information
Name:
Phone:
Order Date:
Order deadline:
Project
Project name:
Shipyard:
Hull No.:
Classification society:
Engine
Engine type:
Engine power:
kW
Engine speed:
rpm
Rotation:
clockwise
anti-clockwise
Engine tuning (RT-flex):
Standard
DeltaTuning
Flywheel inertia:
kgm2
Front disc inertia:
kgm2
TV damper type / designation:
TV damper manufacturer:
Details of the dynamic characteristics of TV damper to be enclosed if already known.
Shafting
Intermediate shaft diameter:
mm
Intermediate shaft length:
mm
Intermediate shaft UTS:
N/mm2
Propeller shaft UTS:
N/mm2
A drawing or sketch of the propulsion shafting should be enclosed.
Water brake
Type:
Manufacturer:
Inertia of rotor with entr. water:
kgm2
Drw.No.:
Elasticity of brake shaft:
rad/Nm (between flange and rotor)
PTO
Type:
Free end gear
Camshaft gear
PTO-Gear
Manufacturer:
Detailed drawings with the gearwheel inertias and gear ratios to be enclosed.
PTO-Clutches/Elastic couplings
The arrangement and the type of couplings to be enclosed.
PT-Generator
Manufacturer:
Service speed range:
rpm
Generator speed:
rpm
Rotor inertia:
kgm2
Rotor mass:
kg
If possible, drawing of generator shaft to be enclosed
Minimum required data needed for provisional calculation.
Table D6
Testbed installation Torsional Vibration Calculation
26.14.40 – Issue XII.10 – Rev. 0 D–14 Wärtsilä Switzerland Ltd
Marine Installation Manual
D. Engine dynamics
RT-flex50-D
D3.3 Marine installation Coupled Axial Vibration Calculation
Client Information Name: Phone: Order Date: Order deadline: Project Project name:
Shipyard: Hull No.: Classification society:
Engine Engine type: Engine power: kW Engine speed: rpm Rotation: clockwise anti-clockwise Engine tuning (RT-flex): Standard DeltaTuning
Flywheel inertia:
kgm2
Flywheel mass:
kg
Front disc inertia:
kgm2
Front disc mass:
kg
TV damper type / designation:
TV damper manufacturer:
Details of the dynamic characteristics of TV damper to be enclosed if already known.
Shafting
Intermediate shaft diameter:
mm
Propeller shaft diameter:
mm
Intermediate shaft length:
mm
Propeller shaft length:
mm
Intermediate shaft UTS:
N/mm2
Propeller shaft UTS:
N/mm2
If possible, a drawing or sketch of the propulsion shafting should be enclosed. In case the
installation consists of a CP-Propeller, a detailed drawing of the oil-distribution shaft is needed
Propeller
Type:
Number of blades:
Diameter:
m
Mean pitch:
m
Expanded area blade ratio:
Inertia in air:
kgm2
Mass in air:
kg
Inertia with entr. water:
kgm2
Mass with entrained water:
kg
In case of a CP-Propeller, the inertia in water for full pitch has to be given and if possible,
the inertia of the entrained water depending on the pitch to be enclosed.
PTO
Type:
Free end gear (RTA)
Tunnel gear
Camshaft gear (RTA)
Shaft generator
PTO-Gear
Manufacturer:
Detailed drawings with the gearwheel inertias and gear ratios to be enclosed.
FP CP 4 5 6
PTO-Clutches/Elastic couplings
The arrangement and the type of couplings to be enclosed.
PTO-Generator Manufacturer: Service speed range: rpm
Generator speed: rpm Rotor inertia: kgm2 Rotor mass: kg
If possible, drawing of generator shaft to be enclosed
Table D7 Marine installation Coupled Axial Vibration Calculation
Wärtsilä Switzerland Ltd D–15 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual D. Engine dynamics RT-flex50-D
D3.4 Marine installation Bending Vibration & Alignment Calculation
Client Information Name: Phone: Order Date: Order deadline: Project Project name:
Shipyard: Hull No.: Classification society:
Engine Engine type: Engine power: kW Engine speed: rpm Rotation: clockwise anti-clockwise Engine tuning (RT-flex): Standard DeltaTuning Flywheel inertia: kgm2 Flywheel mass: kg Front disc inertia: kgm2 Front disc mass: kg TV damper type / designation: TV damper manufacturer:
Details of the dynamic characteristics of TV damper to be enclosed if already known.
Shafting
Intermediate shaft diameter:
mm
Propeller shaft diameter:
mm
Intermediate shaft length:
mm
Propeller shaft length:
mm
Intermediate shaft UTS:
N/mm2
Propeller shaft UTS:
N/mm2
A drawing or sketch of the propulsion shafting should be enclosed. In case the installation
consists of a CP-Propeller, a detailed drawing of the oil-distribution shaft is needed
Propeller
Type:
FP
CP
Number of blades:
4
5
6
Diameter:
m
Mean pitch:
m
Expanded area blade ratio:
Inertia in air:
kgm2
Mass in air:
kg
Inertia with entr. water:
kgm2
Mass with entrained water:
kg
PTO
Type:
Free end gear (RTA)
Tunnel gear
Camshaft gear (RTA)
Shaft generator
PTO-Gear
Manufacturer:
Detailed drawings with the gearwheel inertias, masses and gear ratios to be enclosed.
PTO-Clutches/Elastic couplings
The arrangement and the type of couplings to be enclosed.
PTO-Generator Manufacturer: Service speed range: rpm
Generator speed: rpm Rotor inertia: kgm2 Rotor mass: Kg
Shaft bearings Type:
Stiffness horizontal: N/m Stiffness vertical: N/m Stern tube stiffn. horiz.: N/m Stern tube stiffn. vertical: N/m
Table D8 Marine installation Bending Vibration Calculation
26.14.40 – Issue XII.10 – Rev. 0 D–16 Wärtsilä Switzerland Ltd
Marine Installation Manual
D. Engine dynamics
RT-flex50-D
D3.5 Required information of OD-shafts for TVC
Please fill in all dimensions in the sketch above
Project name : Shipyard : Hull number :
Manufacturer of OD-shaft : OD-shaft type : UTS [N/mm2] :
F20.0069
Fig. D10 OD-shafts for TVC
Wärtsilä Switzerland Ltd D–17 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
D. Engine dynamics
26.14.40 – Issue XII.10 – Rev. 0 D–18 Wärtsilä Switzerland Ltd
Marine Installation Manual
E. Auxiliary power generation
RT-flex50-D
E1 General information
This chapter covers a number of auxiliary power arrangements for consideration. However, if your requirements are not fulfilled, please contact our representative or consult Wärtsilä Switzerland Ltd, Winterthur, directly. Our aim is to provide flexibility in power management, reduce overall fuel consumption and maintain uni-fuel operation.
The sea load demand for refrigeration compressors, engine and deck ancillaries, machinery space auxiliaries and hotel load can be met by using a main-engine driven generator, by a steam-turbine driven generator utilising waste heat from the engine exhaust gas, or simply by auxiliary generator sets.
The waste heat option is a practical proposition for high powered engines employed on long voyages. The electrical power required when loading and discharging cannot be met with a main-engine driven generator or with the waste heat recovery system, and for vessels employed on comparatively short voyages the waste heat system is not viable. Stand-by diesel generator sets (Wärtsilä GenSets), burning heavy fuel oil or marine diesel oil, available for use in port, when manoeuvring or at anchor, provide the flexibility required when the main engine power cannot be utilised.
F10.5321 Main engine Aux. engine Ship service power Ship service steamExhaust gas economiser Steam turbine G Aux. engine G Aux. engineG Aux. engineG G M/G
Fig. E1 Heat recovery, typical system layout
Wärtsilä Switzerland Ltd E–1 26.14.40 – Issue XII.10 – Rev. 0
1800
Marine Installation Manual
RT-flex50-D
E. Auxiliary power generation
E1.1 System description and layout
Although initial installation costs for a heat recovery plant are relatively high, these are recovered by fuel savings if maximum use is made of the steam output, i.e., electrical power and domestics, space heating, heating of tank, fuel and water.
E2 Waste heat recovery
Before any decision can be made about installing a waste heat recovery system (see figure E1) the steam and electrical power available from the exhaust gas is to be established.
For more information see section C7“ General Technical Data – winGTD”.
E3 Power take off (PTO)
Main-engine driven generators are an attractive option when consideration is given to simplicity of operation and low maintenance costs. The generator is driven through a tunnel PTO gear with frequency control provided by thyristor invertors or constant-speed gears.
The tunnel gear is mounted at the intermediate propeller shaft. Positioning the PTO gear in that area of the ship depends upon the amount of space available.
E3.1 Arrangements of PTO
Figure E2 illustrates various arrangements for PTO with generator. If your particular requirements are not covered, please do not hesitate to contact our representative or Wärtsilä Switzerland Ltd, Winterthur, directly.
E3.2 PTO power and speed
PTPT O tunnel gear generatorO with generator
Generator speedGenerator speed [rpm]
1000, 1200, 1500, 18001000, 1800
Power [kWe][kWe]
700700 1200
1)
Remark: 1) Higher powers on request
Table E1 PTO power and speed
Another alternative is a shaft generator.
F10.5231
T1 T T3T2 T T1–T3 Tunnel gear T Thyristor bridge Controllable-pitch propeller Generator
Fig. E2 Tunnel PTO gear
26.14.40 – Issue XII.10 – Rev. 0 E–2 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
F1 General information
Sizing engine ancillary systems, i.e. fresh water cooling, lubricating oil, fuel oil, etc., depends on the contract maximum engine power. If the expected system design is out of the scope of this manual please contact our representative or Wärtsilä Switzerland Ltd, Winterthur, directly.
The winGTD-program enables all engine and system data at any Rx rating within the engine rating field to be obtained.
However, for convenience or final confirmation when optimizing the plant, Wärtsilä Switzerland Ltd provide a computerized calculation service. Please complete in full the questionnaire on the next page to enable us to supply the necessary data.
F1.1 Part-load data
The engine part-load data can be determined with the help of the winGTD-program which is available on request.
F1.2 Engine system data
The data contained in tables F1 to F3 are applicable to the nominal maximum continuous rating (R1) of each five- to eight-cylinder engine and are suitable for estimating the size of the ancillary equipment. These data refer to engines with the following conditions/features:
–
At design (tropical) conditions.
–
Standard Tuning
–
Central fresh water cooling system with single-stage scavenge air cooler (SAC) and integrated or separate HT circuit.
–
ABB A100 series turbochargers.
–
Turbochargers lubricated from the engine’s lubricating system.
Furthermore, the following data are obtainable from the winGTD-program or on request at WCH:
–
Data for engines fitted with others than ABB A100 series turbochargers.
–
Derating and part-load performance data.
–
Data for Delta Tuning.
–
Data for Low-Load Tuning.
Wärtsilä Switzerland Ltd F–1 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual F. Ancillary systems RT-flex50-D
F1.2.1 Engine system data for central fresh water cooling system (single-stage) at nominal maximum continuous rating (R1)
F10.5315
Scavenge air cooler (LT) Recirculation OutletInlet LT Lubricating oil cooler Central cooler HT circuit Cooling with integrated HT circuit Engines equipped with ABB A100 series turbochargers for Mitsubishi MET MB turbochargers use data from the winGTD program (see section C7.2).
Fig. F1 Central fresh water cooling system with single-stage SAC and integrated HT circuit
Turbocharger location
TC exh. side
General data Number of cylinders
–
5
6
7
7
8
Speed 124 rpm Engine power Number and type of turbochargers ABB
kW –
8725 1 x A170-L35
10470 1 x A175-L32
12215 1 x A175-L34
12215 2 x A165-L34
13960 2 x A170-L34
Cooler type
SAC261
SAC265
SAC265
2 xSAC261
2 xSAC261
Cylinder cooling (HT) heat dissipation
kW
1316
1550
1849
1794
2049
Fresh water flow
m3/h
77
91
109
105
120
Fresh water temperature engine in/out
°C
70.0/85.0
70.0/85.0
70.0/85.0
70.0/85.0
70.0/85.0
Scavenge air cooler (LT) heat dissipation
kW
3399
4088
4754
4791
5463
Fresh water flow (LT)
m3/h
165
246
246
330
330
Fresh water temperature cooler in/out
°C
36.0/53.8
36.0/50.4
36.0/52.7
36.0/48.6
36.0/50.3
Scavenge air mass flow
kg/h
60883
73060
85236
85236
97413
Lubricating oil cooler heat dissipation 1)
kW
766
931
1075
1076
1250
Oil flow 1)
m3/h
106
125
142
145
163
Oil temperature cooler in/out
°C
59.6/45.0
60.2/45.0
60.4/45.0
60.1/45.0
60.6/45.0
Fresh water flow
m3/h
66
81
93
93
108
Fresh water temperature cooler in/out
°C
36.0/46.0
36.0/46.0
36.0/46.0
36.0/46.0
36.0/46.0
Mean log. temperature difference
°C
11.2
11.4
11.5
11.4
11.6
Central cooler heat dissipation
kW
5481
6569
7678
7661
8762
Fresh water flow (LT)
m3/h
231
327
339
423
438
Fresh water temperature cooler in/out
°C
56.6/36.0
53.5/36.0
55.7/36.0
51.7/36.0
53.4/36.0
Sea-water flow
m3/h
267
320
375
374
427
Sea-water temperature cooler in/out
°C
32.0/50.0
32.0/50.0
32.0/50.0
32.0/50.0
32.0/50.0
Mean log. temperature difference
°C
5.2
3.7
4.8
3.5
3.7
Exhaust gas heat dissipation 2)
kW
1937
2324
2712
2712
3099
Mass flow
kg/h
61488
73786
86083
86083
98381
Temperature after turbine
°C
281
281
281
281
281
Engine radiation
kW
89
104
119
119
133
Starting air 3) at design pressure
bar
30
30
30
30
30
Bottle (2 units) capacity each
m3
1.7
1.9
2.2
2.2
2.5
Air compressor (2 units) capacity each
m3/h
50
59
68
68
77
Pump capacities / delivery head 4)
m3h
bar
m3/h
bar
m3/h
bar
m3/h
bar
m3/h
bar
Lubricating oil
106
7.6
125
7.6
142
7.6
145
7.6
163
7.6
High temperature circuit (cylinder cooling)
77
2.5
91
2.5
109
2.5
105
2.5
120
2.5
Low temperature circuit
231
2.4
327
2.4
339
2.4
423
2.4
438
2.4
Fuel oil booster
3.9
7.0
4.7
7.0
5.5
7.0
5.5
7.0
6.3
7.0
Fuel oil feed
2.2
4.0
2.6
4.0
3.1
4.0
3.1
4.0
3.5
4.0
Sea-water
267
2.2
320
2.2
375
2.2
374
2.2
427
2.2
Remark: 1) Excluding heat and oil flow for damper and PTO gear.
2) Available heat for boiler with gas outlet temperature 170°C and temperature drop 5°C from turbine to boiler.
3) For 12 starts and refilling time 1 hour, when JRel = 2.0 (see section F2.4).
4) Pressure difference across pump (final delivery head must be according to the actual piping layout).
Table F1 R1 data for central fresh water cooling system with single-stage SAC and integrated HT circuit
26.14.40 – Issue XII.10 – Rev. 0 F–2 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
Turbocharger location
TC aft end
General data Number of cylinders
–
5
6
7
Speed 124 rpm Engine power Number and type of turbochargers ABB
kW –
8725 1 x A170-L35
10470 1 x A175-L32
12215 1 x A175-L34
Cooler type
SAC285
SAC
SAC
Cylinder cooling (HT) heat dissipation Fresh water flow Fresh water temperature engine in/out
kW m3/h °C
70.0/85.0
70.0/85.0
70.0/85.0
Scavenge air cooler (LT) heat dissipation
kW
Fresh water flow (LT)
m3/h
246
Fresh water temperature cooler in/out
°C
36.0/
36.0/
36.0/
Scavenge air mass flow
kg/h
Lubricating oil cooler heat dissipation 1)
kW
Oil flow 1)
m3/h
Oil temperature cooler in/out
°C
/45.0
/45.0
/45.0
Fresh water flow
m3/h
Fresh water temperature cooler in/out
°C
/46.0
36.0/46.0
36.0/46.0
Mean log. temperature difference
°C
Central cooler heat dissipation
kW
Fresh water flow (LT)
m3/h
Fresh water temperature cooler in/out
°C
/36.0
/36.0
/36.0
Sea-water flow
m3/h
Sea-water temperature cooler in/out
°C
32.0/50.0
32.0/50.0
32.0/50.0
Mean log. temperature difference
°C
Exhaust gas heat dissipation 2) Mass flow Temperature after turbine
kW kg/h °C
Engine radiation
kW
89
104
119
Starting air 3) at design pressure Bottle (2 units) capacity each Air compressor (2 units) capacity each
bar m3 m3/h
30 1.7 50
30 1.9 59
30 2.2 68
Pump capacities / delivery head 4)
m3h
bar
m3/h
bar
m3/h
bar
Lubricating oil
7.6
7.6
7.6
High temperature circuit (cylinder cooling)
2.5
2.5
2.5
Low temperature circuit
2.4
2.4
2.4
Fuel oil booster
7.0
7.0
7.0
Fuel oil feed
4.0
4.0
4.0
Sea-water
2.2
2.2
2.2
Remark: 1) Excluding heat and oil flow for damper and PTO gear. 2) Available heat for boiler with gas outlet temperature 170°C and temperature drop 5°C from turbine to boiler. 3) For 12 starts and refilling time 1 hour, when JRel = 2.0 (see section F2.4). 4) Pressure difference across pump (final delivery head must be according to the actual piping layout).
Table F2 R1 data for central fresh water cooling system with single-stage SAC and integrated HT circuit
Wärtsilä Switzerland Ltd F–3 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
F10.5316
Scavenge air cooler (LT) Recirculation OutletInlet LT Lubricating oil cooler Central cooler Cylinder water Cooling with separate HT circuit cooler HT circuit Engines equipped with ABB A100 series turbochargers for Mitsubishi MET MB turbochargers use data from the winGTD program (see section C7.2).
Fig. F2 Central fresh water cooling system with single-stage SAC and separate HT circuit
Turbocharger location
TC exh. side
General data Number of cylinders
–
5
6
7
7
8
Speed 124 rpm Engine power Number and type of turbochargers ABB
kW –
8725 1 x A170-L35
10470 1 x A175-L32
12215 1 x A175-L34
12215 2 x A165-L34
13960 2 x A170-L34
Cooler type
SAC261
SAC265
SAC265
2 xSAC261
2 xSAC261
Cylinder water cooler (HT) heat dissipation
kW
1316
1550
1849
1794
2049
Fresh water flow (HT)
m3/h
77
91
109
105
120
Fresh water temperature cooler in/out
°C
85.0/70.0
85.0/70.0
85.0/70.0
85.0/70.0
85.0/70.0
Fresh water flow (LT)
m3/h
66
81
93
93
108
Fresh water temperature (LT) cooler in/out
°C
46.0/63.2
46.0/62.6
46.0/63.2
46.0/62.7
46.0/62.4
Mean log. temperature difference
°C
22.9
23.2
22.9
23.2
23.3
Cylinder cooling (HT) heat dissipation
kW
1316
1550
1849
1794
2049
Fresh water flow
m3/h
77
91
109
105
120
Fresh water temperature engine in/out
°C
70.0/85.0
70.0/85.0
70.0/85.0
70.0/85.0
70.0/85.0
Scavenge air cooler (LT) heat dissipation
kW
3399
4088
4754
4791
5463
Fresh water flow (LT)
m3/h
165
246
246
330
330
Fresh water temperature cooler in/out
°C
36.0/53.8
36.0/50.4
36.0/52.7
36.0/48.6
36.0/50.3
Scavenge air mass flow
kg/h
60883
73060
85236
85236
97413
Lubricating oil cooler heat dissipation 1)
kW
766
931
1075
1076
1250
Oil flow 1)
m3/h
106
125
142
145
163
Oil temperature cooler in/out
°C
59.6/45.0
60.2/45.0
60.4/45.0
60.1/45.0
60.6/45.0
Fresh water flow
m3/h
66
81
93
93
108
Fresh water temperature cooler in/out
°C
36.0/46.0
36.0/46.0
36.0/46.0
36.0/46.0
36.0/46.0
Mean log. temperature difference
°C
11.2
11.4
11.5
11.4
11.6
Central cooler heat dissipation
kW
5481
6569
7678
7661
8762
Fresh water flow (LT)
m3/h
231
327
339
423
438
Fresh water temperature cooler in/out
°C
56.5/36.0
53.4/36.0
55.6/36.0
51.7/36.0
53.3/36.0
Sea-water flow
m3/h
267
320
375
374
427
Sea-water temperature cooler in/out
°C
32.0/50.0
32.0/50.0
32.0/50.0
32.0/50.0
32.0/50.0
Mean log. temperature difference
°C
5.2
3.7
4.8
3.5
3.7
Exhaust gas heat dissipation 2)
kW
1937
2324
2712
2712
3099
Mass flow
kg/h
61488
73786
86083
86083
98381
Temperature after turbine
°C
281
281
281
281
281
Engine radiation
kW
89
104
119
119
133
Starting air 3) at design pressure
bar
30
30
30
30
30
Bottle (2 units) capacity each
m3
1.7
1.9
2.2
2.2
2.5
Air compressor (2 units) capacity each
m3/h
50
59
68
68
77
Pump capacities / delivery head 4)
m3h
bar
m3/h
bar
m3/h
bar
m3/h
bar
m3/h
bar
Lubricating oil
106
7.6
125
7.6
142
7.6
145
7.6
163
7.6
High temperature circuit (cylinder cooling)
77
2.5
91
2.5
109
2.5
105
2.5
120
2.5
Low temperature circuit
231
2.4
327
2.4
339
2.4
423
2.4
438
2.4
Fuel oil booster
3.9
7.0
4.7
7.0
5.5
7.0
5.5
7.0
6.3
7.0
Fuel oil feed
2.2
4.0
2.6
4.0
3.1
4.0
3.1
4.0
3.5
4.0
Sea-water
267
2.2
320
2.2
375
2.2
374
2.2
427
2.2
Remark: 1) Excluding heat and oil flow for damper and PTO gear.
2) Available heat for boiler with gas outlet temperature 170°C and temperature drop 5°C from turbine to boiler.
3) For 12 starts and refilling time 1 hour, when JRel = 2.0 (see section F2.4).
4) Pressure difference across pump (final delivery head must be according to the actual piping layout).
Table F3 R1 data for central fresh water cooling system with single-stage SAC and separate HT circuit
26.14.40 – Issue XII.10 – Rev. 0 F–4 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
Turbocharger location
TC aft end
General data Number of cylinders
–
5
6
7
Speed 124 rpm Engine power Number and type of turbochargers ABB
kW –
8725 1 x A170-L35
10470 1 x A175-L32
12215 1 x A175-L34
Cooler type
SAC285
SAC
SAC
Cylinder water cooler (HT) heat dissipation
kW
Fresh water flow (HT)
m3/h
Fresh water temperature cooler in/out
°C
85/70.0
85.0/70.0
85.0/70.0
Fresh water flow (LT)
m3/h
Fresh water temperature (LT) cooler in/out
°C
46.0/
46.0/
46.0/
Mean log. temperature difference
°C
Cylinder cooling (HT) heat dissipation Fresh water flow Fresh water temperature engine in/out
kW m3/h °C
70.0/85.0
70.0/85.0
70.0/85.0
Scavenge air cooler (LT) heat dissipation
kW
Fresh water flow (LT)
m3/h
Fresh water temperature cooler in/out
°C
36.0/
36.0/
36.0/
Scavenge air mass flow
kg/h
Lubricating oil cooler heat dissipation 1)
kW
Oil flow 1)
m3/h
Oil temperature cooler in/out
°C
/45.0
/45.0
/45.0
Fresh water flow
m3/h
Fresh water temperature cooler in/out
°C
36.0/46.0
36.0/46.0
36.0/46.0
Mean log. temperature difference
°C
Central cooler heat dissipation
kW
Fresh water flow (LT)
m3/h
Fresh water temperature cooler in/out
°C
/36.0
/36.0
/36.0
Sea-water flow
m3/h
Sea-water temperature cooler in/out
°C
32.0/50.0
32.0/50.0
32.0/50.0
Mean log. temperature difference
°C
Exhaust gas heat dissipation 2) Mass flow Temperature after turbine
kW kg/h °C
Engine radiation
kW
89
104
119
Starting air 3) at design pressure Bottle (2 units) capacity each Air compressor (2 units) capacity each
bar m3 m3/h
30 1.7 50
30 1.9 59
30 2.2 68
Pump capacities / delivery head 4)
m3h
bar
m3/h
bar
m3/h
bar
Lubricating oil
7.6
7.6
7.6
High temperature circuit (cylinder cooling)
2.5
2.5
2.5
Low temperature circuit
2.4
2.4
2.4
Fuel oil booster
7.0
7.0
7.0
Fuel oil feed
4.0
4.0
4.0
Sea-water
2.2
2.2
2.2
Remark: 1) Excluding heat and oil flow for damper and PTO gear. 2) Available heat for boiler with gas outlet temperature 170°C and temperature drop 5°C from turbine to boiler. 3) For 12 starts and refilling time 1 hour, when JRel = 2.0 (see section F2.4). 4) Pressure difference across pump (final delivery head must be according to the actual piping layout).
Table F4 R1 data for central fresh water cooling system with single-stage SAC and separate HT circuit
Wärtsilä Switzerland Ltd F–5 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
F1.2.2 Questionnaire for engine data (winGTD, see section C7)
In order to obtain computerized engine performance data and optimized ancillary system data, please send completed copy of this questionnaire to:
Wärtsilä Switzerland Ltd, PO Box 414,
Dept. 10200, CH-8401 Winterthur, Switzerland.
or fax:
Fax No. +41 52 212 49 17
Client specification
Company:
Name:
Address:
Department:
Country:
Telephone:
Telefax:
Telex:
E-mail:
Date of contact:
Project specification
Project number: Shipowner, country: Shipyard, country: Project manager: Wärtsilä representative:
Engine specification
Number of cylinders: RT-flex50-D PTO: Yes No (continue to ‘Rating point’ below) (see PTO options in table E1) Max. PTO [kW] 700 1200 1800 Speed [rpm]: 1000 1200 1500 1800
Rating point (CMCR = Rx) Power: kW Speed: rpm
Cooling system specification
Central fresh water cooling with single-stage scavenge air cooler and integrated HT circuit
Central fresh water cooling with single-stage scavenge air cooler and separate HT circuit
Calculations are based on an operating mode according to propeller law and design (tropical) conditions.
26.14.40 – Issue XII.10 – Rev. 0 F–6 Wärtsilä Switzerland Ltd
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
F2 Piping systems
All pipework systems and fittings are to conform to the requirements laid down by the legislative council of the vessel’s country of registration and the classification society selected by the owners. They are to be designed and installed to accommodate the quantities, velocities, flow rates and contents identified in this manual, set to work in accordance with the build specification as approved by the classification society and protected at all times from ingress of foreign bodies. All pipework systems are to be flushed and proved clean prior to commissioning. For flushing the lubricating oil system, please follow the instructions in section F2.2.9, and for flushing the fuel oil system follow the instructions in section F2.3.6.
Note:
The pipe connections on the engine are supplied with blind mating flanges, except for the turbocharger exhaust gas outlet. Screw connections are supplied complete.
The entire section F2 “Piping systems” is applicable for the following engines:
–
Wärtsilä 5–8RT-flex50-D TC exh. side
–
Wärtsilä 5–7RT-flex50-D TC aft end
F2.1 Cooling water and pre-heating systems
The cooling system of the RT-flex50-D engine runs on either one of the following standard layouts:
–
Central fresh water cooling system with single-stage scavenge air cooler and integrated HT circuit (see figure F3).
–
Central fresh water cooling system with single-stage scavenge air cooler and separate HT circuit (see figure F4).
F2.1.1 Central fresh water cooling system
As standard the cooling medium of the scavenge air cooler(s) of the RT-flex50-D is fresh water, this involves the use of a central fresh water cooling system. The central fresh water cooling system comprises ‘low-temperature’ (LT) and ‘high-temperature’ (HT) circuits. Fresh water cooling systems reduce the amount of sea-water pipework and its attendant problems and provides for improved cooling control. Optimizing central fresh water cooling results in lower overall running costs when compared with the conventional sea-water cooling system. For more information please contact Wärtsilä Switzerland Ltd, Winterthur.
Wärtsilä Switzerland Ltd F–7 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
F. Ancillary systems
Sea-water pipes Remarks:
LT fresh water pipes 4) Only when item 015 is installed.
HT fresh water pipes 6) Depending on vibration, a flexible hose connection may be
Balance pipes recommendable.
Ancillary equipment pipes — Air vent pipes and drain valves where necessary.
Drain / overflow pipes — Air vent and drain pipes must be fully functional at all inclination
angles of the ship at which the engine must be operational.
Air vent pipes
(Control / feedback)
Pipes on engine / pipe connections Note:
For legend see table F5. 346.361d
Fig. F3 Central fresh water cooling system with single-stage scavenge air cooler and integrated HT circuit
26.14.40 – Issue XII.10 – Rev. 0 F–8 Wärtsilä Switzerland Ltd
-
tion F4 ‘Pipe size and flow details’
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
001 Expansion tank, see figure F5 002 Low sea chest 1) 003 High sea chest 004 Sea-water strainer 005 Air vent (air vent pipe or equal venting system acc. to shipyard’s design) 006 Sea-water circulating pump 007 Central sea-water cooler 008 Automatic temperature control valve for LT circuit 009 Temperature sensor of regulating system, min. temp. of SAC inlet: 25 °C 010 Fresh water pump for LT circuit 011 Lubricating oil cooler 012 Automatic temperature control valve for HT circuit 013 Temperature sensor of regulating system, constant temp. at engine outlet 014 Cylinder cooling water pump for HT circuit 015 Pre-heating circulating pump (optional), capacity 10% of pump 014 7) 016 Heater for main engine (HT circuit) 017 Air vent pipe (piping on engine, at free end or at driving end) Remarks: 018 Throttling disc (adjustable on engine, at free end or at driving end) 1) If requested, two low sea chests are applicable.
019 Throttling disc 2) 2) When using a valve, lock in proper position to avoid
020 Fresh water generator mishandling.
023 Filling pipe / inlet chemical treatment 3)
024 Scavenge air cooler 3) Other designs like hinged covers, etc. are also possible.
1 Cylinder cooling water inlet (at free end or at driving end)5) The inlet and outlet pipes to SAC have to be designed
2 Cylinder cooling water outlet (at free end or at driving end)
to allow for engine thermal expansion, or expansion 5 Scavenge air cooler, cooling water inlet 5) parts have to be fitted.
7 Scavenge air cooler, cooling water outlet and air vent 5)
7) For guidance only, final layout according to actual en16 Cylinder cooling water air vent (at free end or at driving end) gine pre-heating requirements.
346.361d
Number of cylinders
5
6
7
8
Main engine RT-flex50-D -RT
(R1)(R1)
power speed
kW rpm
8 725
10 470
124
12 215
13 960
Pressure drop across the engine
Δp
bar
1.3
Cooling water expansion tank (HT)
cap.
m3
0.5
0.5
0.5
0.5
Cooling water expansion tank (LT)
cap.
m3
depending on ancillary plants
Nominal pipe diameter
A
DN
B
DN
To be determined by shipyard. Suitable for main engine and ancillary plants. Suitable for main engine and ancillary plants.
C
DN
All pipe diameters are valid for R1-ratedAll rated
D
DN
125
125
125
150
engines and laid out for flows given inengines in section F1.2 ‘Engine system data’.
E
DN
100
125
125
125
F
DN
80
80
80
100
For pipe diameters if Rx-rated pump caFor capacities are used, please refer to secpacities sec -
G
DN
125
125
125
150
H
DN
65
65
65
80
J
DN
80
80
100
100
K
DN
40
40
40
40
Table F5 Central fresh water cooling system with single-stage scavenge air cooler and integrated HT circuit
Wärtsilä Switzerland Ltd F–9 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
F. Ancillary systems
Remarks:
Sea-water pipes 4) Only when item 016 is installed.
LT fresh water pipes 6) Depending on vibration, a flexible hose connection may beHT fresh water pipes recommendable.
Balance pipes — Air vent pipes and drain valves where necessary.
Ancillary equipment pipes — Air vent and drain pipes must be fully functional at all inclinationDrain / overflow pipes angles of the ship at which the engine must be operational.
Air vent pipes
(Control / feedback)
Note:
Pipes on engine / pipe connections For legend see table F6.
340.819c
Fig. F4 Central fresh water cooling system with single-stage scavenge air cooler and separate HT circuit
26.14.40 – Issue XII.10 – Rev. 0 F–10 Wärtsilä Switzerland Ltd
section F1.2 ‘Engine system data’.
pacities are used, please refer to sec-
-
Marine Installation Manual
F. Ancillary systems
RT-flex50-D 001 Expansion tank, HT circuit (see figure F6) 002 Expansion tank, LT circuit (see figure F7) 003 Low sea chest 1) 004 High sea chest 005 Sea-water strainer 006 Air vent (air vent pipe or equal venting system acc. to shipyard’s design) 007 Sea-water circulating pump 008 Central sea-water cooler 009 Automatic temperature control valve for LT circuit 010 Temperature sensor of regulating system, min. temp. of SAC inlet: 25 °C 011 Fresh water pump for LT circuit 012 Lubricating oil cooler 013 Automatic temperature control valve for HT circuit 014 Temperature sensor of regulating system, constant temp. at engine outlet 015 Cylinder cooling water pump for HT circuit 016 Pre-heating circulating pump (optional), capacity 10% of pump 015 7) 017 Heater for main engine (HT circuit) 018 Air vent pipe (piping on engine, at free end or at driving end) 019 Throttling disc (adjustable on engine, at free end or at driving end) 020 Throttling disc 2) 021 Fresh water generator 023 Filling pipe / inlet chemical treatment 3) 024 Scavenge air cooler 026 Cylinder cooling water cooler Remarks: 1) If requested, two low sea chests are applicable. 2) When using a valve, lock in proper position to avoid mishandling. 3) Other designs like hinged covers, etc. are also possible. 5) The inlet and outlet pipes to SAC have to be designed to allow for engine thermal expansion, or expansion parts have to be fitted. 7) For guidance only, final layout according to actual engine pre-heating requirements. 1 Cylinder cooling water inlet (at free end or at driving end) 2 Cylinder cooling water outlet (at free end or at driving end) 5 Scavenge air cooler, cooling water inlet 5) 16 Cylinder cooling water air vent (at free end or at driving end) 340.819c 7 Scavenge air cooler, cooling water outlet and air vent 5) Number of cylinders 5 6 7 8 Main engine RT-flex50-D (R1) power kW 8 725 10 470 12 215 13 960 D(speed rpm 124 Pressure drop across the engine Δp bar 1.3 Cooling water expansion tank (HT) cap. m3 0.5 0.5 0.5 0.5 Cooling water expansion tank (LT) cap. m3 depending on ancillary plants Nominal pipe diameter A DN To be determined by shipyard. B DN Suitable for main engine and ancillary plants. All pipe diameters are valid for R1-rated C DN engines and laid out for flows given in D DN 125 125 125 150 E DN 100 125 125 125 For pipe diameters if Rx-rated pump ca-G DN 125 125 125 150 ca section F4 ‘Pipe size and flow details’ H DN 65 65 65 80 tion J DN 80 80 100 100 K DN 40 40 40 40
Table F6 Central fresh water cooling system with single-stage scavenge air cooler and separate HT circuit
Wärtsilä Switzerland Ltd F–11 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
F2.1.1.1 Central fresh water cooling system components
The following description of the components refers to figure F3 (central fresh water cooling system with single-stage scavenge air cooler and integrated HT circuit). The high-temperature circuit may also be completely separate from the low-temperature circuit. In this case the high-temperature circuit has its own cooler (see figure F4) with the fresh water from the low-temperature circuit as cooling medium.
Low-temperature circuit (LT):
–
Sea-water strainer (item 004) Simplex or duplex to be fitted at each sea chest and arranged to enable manual cleaning without interrupting flow. The strainer perforations are to be sized (not more than 6 mm) to prevent passage of large particles and debris damaging the pumps and impairing heat transfer across the coolers.
–
Sea-water pump (item 006)
•
Pump type: centrifugal
•
Pump capacity: refer to table F1/F3, the given sea-water flow capacity covers the need of the engine only and is to be within a tolerance of 0 to +10%.
•
Delivery head: the final delivery head is determined by the layout of the system and is to ensure that the inlet pressure to the scavenge air coolers is within the range of the summarized data in table C5.
–
Central cooler (item 007)
•
Cooler type: plate or tubular
•
Cooling medium: sea-water
•
Cooled medium: fresh water
•
Heat dissipation: refer to table F1/F3
•
Margin for fouling: 10 to 15% to be added
•
Fresh water flow: refer to table F1/F3
•
Sea-water flow: refer to table F1/F3
•
Temperatures: refer to table F1/F3
–
Temperature control (item 008) The central fresh water cooling system is to be capable of maintaining the inlet temperature to the scavenge air cooler at 25°C minimum to 36°C maximum.
–
Fresh water pumps for LT circuit (item 010)
•
Pump type: centrifugal
•
Pump capacity: refer to table F1
•
The given capacity of fresh water flow covers the need of the engine only and is to be within a tolerance of 0% to +10%.
•
Delivery head: the final delivery head is determined by the layout of the system and is to ensure that the inlet pressure to the scavenge air coolers is within the range of the summarized data .
–
Scavenge air cooler (item 024)
•
Cooler type: tubular
•
Cooling medium: fresh water
•
Cooled medium: scavenge air
•
Heat dissipation: refer to table F1/F3
•
fresh water design flow: refer to table C1
•
Temperatures: refer to table F1/F3
High-temperature circuit (HT):
– HT cooling water pump (item 014)
•
Pump type: centrifugal, with a steep head-curve is to be given preference. As a guide, the minimum advisable curve steepness can be defined as follows: For a pressure increase from 100% to 107%, the pump capacity should not decrease by more than 10%.
•
Pump capacity: refer to table F1/F3
•
The flow capacity is to be within a tolerance of –10% to +20%.
•
Delivery head: determined by system layout.
•
Working temperature: 90°C
26.14.40 – Issue XII.10 – Rev. 0 F–12 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
– Pump delivery head (pp) The required delivery head can be calculated as follows: ≥ System pressure losses (p) ≥ required pressure at the engine inlet (p0)
+ pressure drop between the pump inlet and the engine inlet (dp)
– constant (h / 10.2)
pp ≥ p ≥ p0– h / 10.2 + dp [bar]
The system pressure losses (p) are the pressure drop across the system components and pipework and the pressure drop across the engine (see table F5). The pump delivery head (pp) depends on the height of the expansion tank, the pressure drop between pump outlet and engine inlet (dp), and the required pressure at the engine inlet (p0). The constant is given as the difference in height between the expansion tank and the engine inlet (h) divided by 10.2.
– Expansion tank (item 001) The expansion tank shown in figure F5 is to be fitted at least 3.5 m above the highest engine air vent flange to ensure the required static head is applied to the cylinder cooling water system. It is to be connected by a balance pipe, to replenish system losses, using the shortest route to the cylinder cooling water pump suction, making sure that pipe runs are as straight as possible without sharp bends. The pipe sizes and tank are given in table F5. The cylinder cooling water system air vents are to be routed through the bottom of the expansion tank with the open end below the minimum water level.
–
Automatic temp. control valve (item 012) Electric or electro/pneumatic actuated three-way type (butterfly valves are not adequate) having a linear characteristic.
•
Design pressure: 5 bar
•
Test pressure: refer to the specification laid down by the classification society.
•
Pressure drop across valve: max. 0.5 bar
•
Controller: proportional plus integral (PI); also known as proportional plus reset for steady state error of max. ±2 °C and transient condition error of max. ±4 °C.
•
Temperature sensor: according to the control valve manufacturers specification fitted in the engine outlet pipe.
–
Air vent pipe (item 017) Releases air gas mixtures from the cylinder cooling water through the automatic float vent valve into the cylinder cooling water feed and drain tank.
Wärtsilä Switzerland Ltd F–13 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
F. Ancillary systems
001 Drain
002 Air vent from HT circuit
003 Balance pipe from HT circuit
004 Balance pipe from LT circuit
005 Overflow / air vent
006 Low level alarm
007 Level indicator 1)
008 Thermometer
009 Inspection cover 2)
010 Filling pipe / inlet chemical treatment 2)
362.343
Fig. F5 Central cooling water system expansion tank
Remarks:
1) Level indicator can be omitted if an alternative is fitted. 2) Other designs (like hinged covers etc) are also possible. 3) Depending on actual ancillary plants.
— For required tank capacities and pipe diameters see table F5.
26.14.40 – Issue XII.10 – Rev. 0 F–14 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
F. Ancillary systems
001 Drain from HT circuit 002 Air vent from HT circuit 003 Balance pipe from HT circuit 004 Overflow / air vent 005 Low level alarm 006 Level indicator 1) 007 Thermometer
Remarks:
008 Inspection cover 2) 1) Level indicator can be omitted if an alternative is fitted.
009 Filling pipe / inlet chemical treatment 2) 2) Other designs (like hinged covers etc) are also possible.
— For required tank capacities and pipe diameters see table F6.
362.179a
Fig. F6 Central cooling water system expansion tank (HT circuit)
Wärtsilä Switzerland Ltd F–15 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
F. Ancillary systems
001 Drain
002 Balance pipe from LT circuit
003 Overflow / air vent
004 Low level alarm
005 Thermometer
Remarks:
006 Level indicator 1) 1) Level indicator can be omitted if an alternative is fitted.
007 Inspection cover 2) 2) Other designs (like hinged covers etc) are also possible.
008 Filling pipe / inlet chemical treatment 2)
— For required tank capacities and pipe diameters see table F6. 245.419b
Fig. F7 Central cooling water system expansion tank (LT circuit)
26.14.40 – Issue XII.10 – Rev. 0 F–16 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
F2.1.2 General recommendations for design
The number of valves in the system is to be kept to a minimum in order to reduce the risk of incorrect setting.
Valves are to be locked in the set position and labelled to eliminate incorrect handling.
The possibility of manual interference of the cooling water flow in the various branches of the cylinder cooling water system is to be avoided by installing and setting throttling discs at the commissioning stage and not by adjusting the valves.
Under normal operation of the cylinder cooling water system the pump delivery head and the total flow rate are to remain constant even when the fresh water generator is started up or shut down.
The cylinder cooling water system is to be totally separated from steam systems. Under no circumstances are there to be any possibilities of steam entering the cylinder cooling water system, e.g. via a fresh water generator.
The installation of equipment affecting the controlled temperature of the cylinder cooling water is to be examined carefully before being added. Uncontrolled increases or decreases in cylinder cooling water temperature may lead to thermal shock of the engine components and scuffing of the pistons. Thermal shock is to be avoided and the temperature gradient of the cooling water when starting and shutting down additional equipment is not to exceed two degrees per minute at the cooler inlet.
The design pressure and temperature of all the component pipes, valves, expansion tank, fittings, etc., are to meet the requirements of the classification society.
F2.1.3 Cooling water treatment
Correct treatment of the cooling fresh water is essential for safe engine operation. Only totally demineralized water or condensate must be used. In the event of an emergency tap water may be used for a limited period but afterwards the entire cylinder cooling water system is to be drained off, flushed, and recharged with demineralized water.
Recommended parameters for raw water
•
min. pH 6.5
•
max. 10 °dH (corresponds to 180 mg/l CaCO3) 1)
•
max. 80 mg/l chloride
•
max. 150 mg/l sulphates
1) In case of higher values the water is to be softened.
In addition, the water used must be treated with a suitable corrosion inhibitor to prevent corrosive attack, sludge formation and scale deposits, refer to the chemical supply companies for details. Monitoring the level of the corrosion inhibitor and water softness is very important to prevent down-times due to component failures resulting from corrosion or impaired heat transfer. No internally galvanized steel pipes should be used in connection with treated fresh water, since most corrosion inhibitors have a nitrite base. Nitrites attack the zinc lining of galvanized piping and create sludge.
Wärtsilä Switzerland Ltd F–17 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
F2.1.4 Fresh water generator
A fresh water generator, utilizing heat from the cylinder cooling system to distil sea-water, can be used to meet the demand for washing and potable water. The capacity of the fresh water generator is limited by the amount of heat available which in turn is dependant on the service power rating of the engine. It is important at the design stage to ensure there are sufficient safeguards to protect the main engine from thermal shock when the fresh water generator is started. To reduce such risk, the use of valves, e.g., butterfly valves at the fresh water generator inlet and in the by-pass line, which are linked and actuated with a large reduction ratio, will be of advantage. The following installations are given as examples and we recommend that the fresh water generator valves (7 and 8) be operated by progressive servomotors and a warning sign be displayed on the fresh water generator to remind engine-room personnel of the possibilities of thermal shocking if automatic start up is overridden.
WARNING
Avoid thermal shock to your main engine.
The fresh water generator inlet and outlet
valves to be opened and closed slowly and
progressively.
It is important that the by-pass with valve (8) has the same pressure drop as the fresh water generator. This must be open when the fresh water generator is not in operation and closed when the fresh water generator is operating. To avoid wrong manipulation we recommend to interlock valves 7 and 8. Figures F8 and F9 ‘Fresh water generator installation alternative’ provide two systems designed to utilize in ‘A’ up to 50 % of available heat and ‘B’ up to 85 % of available heat.
Alternative A
Fresh water generators with an evaporator heat requirement not in excess of 50 % of the heat available to be dissipated from the cylinder cooling water at full load (CMCR) and only for use at engine loads above 50 %, can be connected in series as shown in figure F8. The throttling disc (6) serves to correct the water flow rate if the pressure drop in the cooling circuit is less than that in the fresh water generator circuit. It is to be adjusted so that the cylinder cooling water pressure at the engine inlet is maintained within the pressure range of the summarized data in table C5 when the fresh water generator is started up and shut down.
F10.3246
Fig. F8 Fresh water generator installation alternative ‘A’
26.14.40 – Issue XII.10 – Rev. 0 F–18 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
Alternative B
A fresh water generator with an evaporator heat requirement not in excess of 85 % of the heat available to be dissipated from the cylinder cooling water at full load (CMCR), can be connected in series as shown in figure F9. This arrangement requires the provision of an additional automatic temperature control valve (4A) connected in cascade control with the cylinder cooling water cooler temperature control valve (4B), and controlled by the step controller (9) sensing the outlet cylinder cooling water temperature from the engine. If the engine cylinder cooling water outlet temperature is falling below the set point, the valve (4A) reduces the flow of cylinder cooling water to the fresh water generator to compensate. A part of the cylinder cooling water is then routed directly to the cooling water pumps (2) until the normal temperature is attained. This means that the fresh water generator can be kept in continuous operation, although the generated fresh water volume decreases due to the reduced flow of hot water to the evaporator.
When the fresh water generator cannot dissipate all the heat in the cylinder cooling water, the valve (4A) is fully opened across connections 1 and 2 and a valve travel limit switch changes the regulation of the cylinder cooling water temperature to temperature control valve (4B). This in turn passes water to the cylinder cooling water cooler (3) to maintain the engine cylinder water outlet at the required temperature. If in this condition the engine cylinder cooling water temperature falls below the set point and the cooler (3) is fully bypassed, the valve (4B) is fully opened across connections 2 and 1 and a valve travel limit switch transfers regulation of the cylinder cooling water temperature back to temperature control valve (4A).
As an alternative to a single step controller (9) two controllers can be installed, one for each valve, making sure that there is a 3°C difference in the set point between (4A) and (4B) to avoid both controllers acting at the same time.
F10.3384
Fig. F9 Fresh water generator installation alternative ‘B’
Wärtsilä Switzerland Ltd F–19 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
The quantity of fresh water (FW) produced by a single-effect vacuum (flash) evaporator can be estimated for guidance purposes as follows:
FW produced in tday 32 103 QFW
where QFW is the available heat in kW from the cylinder cooling water, estimated from table F1.
Example for alternative ‘A’
7RT-flex50-D – R1 specification of 12 215 kW at 124 rpm fitted with central cooling system and single-stage scavenge air cooler. The available heat (from table F1/F3) is 1849 kW. Alternative ‘A’ utilizes up to 50 per cent of the available heat therefore there is 924 kW of heat available. Substitute this value in the equation:
FW produced in t/day = constant available heat
FW minimal produced in tday 32 103 924
FW produced in t/day = 29.5
Example for alternative ‘B’
7RT-flex50-D – R1 specification of 12 215 kW at 124 rpm fitted with central cooling system and single-stage scavenge air cooler. The available heat (from table F1/F3) is 1849 kW. Alternative ‘B’ utilizes up to 85 per cent of the available heat therefore there is 1571 kW of heat available. Substitute this value in the equation:
FW produced in t/day = constant available heat
FW minimal produced in tday 32 103 1571
FW produced in t/day = 50.3
Note:
For more information a “Concept Guidance“
showing installation options for fresh water generators is available; please ask WCH.
The indicated values for evaporator heat requirement and load in alternative A and B (i.e. 50 % and
85 % respectively) are only applicable if there are
no additional heat consumers installed (e.g.
feed water pre-heater for waste heat recovery,
etc.).
F2.1.5 Pre-heating
To prevent corrosive liner wear when not in service or during short stays in port, it is important that the main engine is kept warm. Warming-through can be provided by a dedicated heater as shown in figure F3/F4 ‘Central fresh water cooling system’, using boiler raised steam or hot water from the diesel auxiliaries, or by direct circulation from the diesel auxiliaries.
If the main cylinder water pump is to be used to circulate water through the engine during warming up, the heater is to be arranged parallel with the cylinder water system and on / off control provided by a dedicated temperature sensor on the cylinder water outlet from the engine. The flow through the heater is set by throttling discs, and not by valves, to assure flow through the heater.
If the requirement is for a separate pre-heating pump, a small unit of 10 % of the main pump capacity and an additional non-return valve between the cylinder cooling water pump and the heater are to be installed (please compare the values of item 015 in table F5 and 016 in table F6. In addition the pumps are to be electrically interlocked to prevent two pumps running at the same time.
Before starting and operating the engine, a temperature of 60°C at the cylinder cooling water outlet of the main engine is recommended. If the engine is to be started below the recommended temperature, engine power is not to exceed 80 % of CMCR until the water temperature has reached 60°C.
To estimate the heater power capacity required to achieve 60°C, the heating-up time and the engine ambient temperature are the most important parameters. They are plotted on the graph shown in figure F10 to arrive at the required capacity per cylinder; this figure is multiplied by the number of cylinders to give the total heater capacity required.
26.14.40 – Issue XII.10 – Rev. 0 F–20 Wärtsilä Switzerland Ltd
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
F10.4095
Fig. F10 Pre-heating power requirement
Example for 7RT-flex50-D
–
Estimated heating-up time: 6 h.
–
Engine ambient temperature: 40 °C.
–
Required engine temperature: 60 °C. From the graph in figure F10:
•
the approximate amount of heat per cylinder is 7.2 kW.
•
heater capacity required is
7 7.2 kW = 50.4 kW.
If the requirement for warming up is from the cooling water system of the diesel auxiliaries, it is essential that the amount of heat available at normal load is sufficient to warm the main engine. If the main and auxiliary engines have a cooling water system which can be cross-connected, it is important to ensure that any pressure drop across the main engine, when the cross-connection is made, does not affect the cooling water pressure required by the auxiliaries. If the cooling water systems are separate then a dedicated heat exchanger is required to transfer the heat to the main cylinder water system.
F2.2 Lubricating oil systems
Engine lubrication is achieved using two separate systems, the main lubricating system, including turbochargers, and the cylinder lubricating system.
F2.2.1 Lubricating oil systems for turbochargers
The ABB A100-L and Mitsubishi MET MB turbochargers feature journal bearings which are lubricated from the engine’s lubricating system. As an option, a separate lubricating oil system (fig. F13) which only serves the turbochargers can be supplied. For more information please contact WCH. For lubricating oil of turbochargers equipped with separate lubricating oil systems, the recommendations given by the supplier must be observed.
F2.2.2 Main lubricating oil system
Lubrication of the main bearings, thrust bearings, bottom-end bearings, crosshead bearings, together with the piston cooling, is carried out by the main lubricating oil system, see figure F12. The main bearing oil is also used to cool the piston crown, to lubricate and cool the torsional damper and the axial damper (detuner). The cylinder liner lubrication is carried out by a separate system as shown in the upper part of figure F12. This system is based on the once-through principle, i.e. fresh lubricating oil is directly fed into the cylinders to provide lubrication for the liners, pistons and piston rings.
The consumption of system oil and cylinder lubricating oil is indicated in table A1.
A schematic arrangement of the lubricating oil system on the engine is shown in figure F14.
Wärtsilä Switzerland Ltd F–21 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F.
Ancillary systems
Specifications for the engine lubrication that need to be met
340.984f
Fig. F11 Connections and specifications for the engine lubrication
26.14.40 – Issue XII.10 – Rev. 0 F–22 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
F. Ancillary systems
Lubricating oil system
(alternative executions are possible)
Remarks:
1) All tank and pump capacities as well as the pipe diameters are layout including the integrated turbocharger lubrication, but excluding any possibly installed damper and PTO gears. In case of damper and/or PTO gear installation, the capacities need to be adapted accordingly. For selecting the appropiate pipe diameters, please refer to table F22 “Recommended fluid velocities and flow rates for pipework”.
Bearing lub. oil pipes Cylinder lub. oil pipes Cylinder lub. oil pipes trace heated and insulated Transfer/dirty lub. oil pipes Drain / overflow pipes Air vent pipes
3) The by-pass line with the pressure control valve can be omitted if the main lubricating
Pipes on engine / pipe oil pumps have a built-in pressure control connections and safety valve or if centrifugal pumps are used. 4) Optional heating coil.
— Air vent pipes and drain valves where necessary.
Note:
— Air vent and drain pipes must be fully func-For legend see table F7
tional at all inclination angles of the ship at which the engine must be operational. 340.984f
Fig. F12 Lubricating oil system
Wärtsilä Switzerland Ltd F–23 26.14.40 – Issue XII.10 – Rev. 0
section F4 ‘Pipe size and flow details’.
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
001
Main engine RT-flex50-D 002 Lubricating oil drain tank 003 Heating coil 004 Suction filter 005 Lubricating oil pump 006 Lubricating oil cooler 007 Automatic temperature control valve; constant temp. at engine inlet: 45 °C 008 Lubricating oil filter 009 Reduction piece (only when required) 010 Deck connection 011 Cylinder lubricating oil storage tank 2) 012 Cylinder lubricating oil service tank 014 Automatic oil filter (on engine) 015 Pressure control valve Remarks: 2) Alternatively, the cylinder oil can be fed directly from the storage tank by gravity to the lubricators. If this arrangement is preferred, the storage tank is to be located at the same height as requested for the service tank and the feed pipe to the lubricators is provided with a flow meter. This pressure loss resulting from the flowmeter has to be compensated by increasing the min. height from cylinder lubricator to the tank base and/or the pipe diameter, accordingly. 18 Oil pipe turbocharger outlet 24 Lubricating oil inlet 340.984f 26 Cylinder lubricating oil inlet 17 Oil leakage pipe exhaust valve outlet (driving end) 11 Oil pipe drain supply unit outlet 29 Horizontal lubricating oil drain from bedplate (for testbed only) 30 Vertical lubricating oil drain from bedplate (standard execution) 47 Oil drain pipe, servo system outlet
Number
of cylinders 5 6 7 8 Main engine RT-flex50-D (R1) power kW 8 725 10 470 12 215 13 960 D(speed rpm 124 Lub. oil drain tank 1) m3 For capacities see figure F21Lub. m3 F21 Cylinder lub. oil storage tank cap. m3 based on a consumption of approx. 0.7 g/kWh (Pulse lubricat.) Cylinder lub. oil service tank cap. m3 0.5 0.5 0.6 0.7 Lubricating oil pump cap. m3/h see table F1/F3 Nominal pipe diameter A DN 200 200 200 250 B DN 150 200 200 200 All pipe diameters are valid for F DN 32 32 40 40 R1-rated engines and laid out for flows given in section F1.2 G DN 32 32 32 40 ‘Engine system data’. H DN 32 32 32 32 For pipe diameters if Rx-rated pump J DN 50 50 50 50 capacities are used, please refer to K DN 40 40 40 40 L DN 65 65 65 65
M DN 65 65 65 65
Remarks: 1) The capacity can be proportionally reduced to actual CMCR.
–
All capacities and given diameters are valid for the engines excl. oil flow for damper and PTO-gear.
–
The pipe diameters for the lub. oil separator are sized acc. to the effective throughput capacity of the separator and acc. to the manufacturers recommendations for the separator.
–
The given diameters are given for R1 rating.
Table F7 Lubricating oil system: referring legend, remarks and data
26.14.40 – Issue XII.10 – Rev. 0 F–24 Wärtsilä Switzerland Ltd
Marine Installation Manual F. Ancillary systems RT-flex50-D
Bearing lub. oil pipes Transfer/dirty lub. oil pipes Overflow/drain pipes Air vent pipes Pipes on engine / pipe connections
A170
A1751 x ABB
Data available
on request
001 Turbocharger ABB TPL 002 Lubricating oil drain tank 003 Heating coil 004 Suction filter 005 Lubricating oil pump 006 Lubricating oil cooler 007 Automatic temperature control valve 008 Lubricating oil filter 009 Pressure regulating valve
II
III I Lubricating oil inlet 5)
Lubricating oil outlet 5)
Air vent manifold 5)
Remarks:
1) Total lub. oil tank capacity is higher than min. residual volume and contains additional volumes:
–
emergency oil in the integrated head tank
(60 liters per turbocharger) – oil in the pipeline which drains back when pump is stopped
–
additional volume of air.
For final confirmation of total capacity, please ask
turbocharger manufacturer.
2) For pump capacity, temperatures and oil viscosity, please refer to the winGTD program.
3) Delivery head must be according to the actual piping layout.
4) For corresponding data, please refer to manufacturer of
turbocharger. 5) Numbers for engine pipe connections: please refer to pipe connection plan, in section F5.
— Air vent and drain pipes must be fully functional at all inclination angles of the ship at which the engine must be operational.
338.847d
Fig. F13 Lubricating oil system for 1 x ABB A170/175 turbocharger
Wärtsilä Switzerland Ltd F–25 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
F. Ancillary systems
TI Thermometer localPI Pressure gauge localLS Level switch FS Flow switch PS Pressure switchPT Pressure transmitterTE Temperature element
26.14.40 – Issue XII.10 – Rev. 0 F–26 Wärtsilä Switzerland Ltd
Servo oil: operating pressure between 100 and 200 bar,
depending on engine load and engine tuning, max. pressure 230 bar396.572a
System bearing oil and turbocharger oil: 4 bar
Fig. F14 Lubricating oil system on the engine
Drains
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
F2.2.3 Main lubricating oil system components
– Lubricating oil pump
•
Positive displacement screw pumps having built-in overpressure relief valves or centrifugal pumps.
•
Pump capacity for positive displacement pump: refer to table F1/F3, the given flow rate is to be within a tolerance of 0% to +10% plus the back-flushing flow of the automatic filter, if any.
•
Pump capacity for centrifugal pump: refer to table F1/F3, the given flow rate is to be within a tolerance of –10% to +10% plus the back-flushing flow of the automatic filter, if any.
•
Delivery head: see table F1/F3. The final delivery head to be determined is subject to the actual piping layout.
•
Working temperature: 60°C
•
Oil type: SAE30, 50 cSt at working temperature, maximum viscosity to be allowed for when sizing the pump motor is 400 cSt.
– Lubricating oil cooler
•
Oil flow: refer to table F1/F3
•
Type: plate or tubular
•
Cooling medium: fresh water or sea-water
•
Heat dissipation: refer to table F1
•
Margin for fouling: 10% to 15% to be added
•
Oil visc. at cooler inlet: 50 cSt at 60°C
•
Oil temperature at inlet: approx. 60°C
•
Oil temperature at outlet: 45°C
•
Working pressure oil side: 6 bar
•
Working pressure water side:
approx. 3 bar
•
Cooling water flow: refer to table F1/F3
•
Cooling water temperature:
Fresh water 36°C.
– Lubricating oil full flow filters
•
Type: change-over duplex filter designed for in-service cleaning, with differential-pressure gauge and high differential-pressure alarm contacts. Alternatively:
•
Type: automatic back-flushing filter with differential pressure gauge and high differential-pressure alarm contacts. Designed to clean itself automatically using reverse flow or compressed air techniques. The drain from the filter is to be sized and fitted to allow free flow into the residue oil tank. The output required by the main lubricating oil pump to ‘back ’ the filter without interrupting the flow is to be taken into account when estimating the pump capacity.
•
Test pressure: specified by classification society
•
Working pressure: 6 bar
•
Working viscosity: 95 cSt, at working temperature
•
Oil flow: refer to table F1/F3, main lubricating oil capacity
•
Diff. pressure, clean filter: 0.2 bar max
•
Diff. pressure, dirty filter: 0.6 bar max
•
Diff. pressure, alarm: 0.8 bar max
•
Bursting pressure of filter inserts: min. 8 bar (= differential pressure across the filter inserts)
•
Filter material: stainless steel mesh
•
Mesh size: sphere passing max. 0.05 mm
Wärtsilä Switzerland Ltd F–27 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
F2.2.4 Cylinder lubricating oil system
Cylinder liner lubrication is carried out by a separate system included in figure F12 ‘Lubricating oil system’, working on the once-through principle using a high-alkaline oil of SAE 50 grade fed to the surface of the liner through hydraulically actuated quills. The oil supply rate is adjustable and metered to suit the age and running condition of the piston rings and liners. The arrangement of service tank (012) and storage tank (011) shown in figure F12 can be changed by locating the storage tank in place of the service tank. If this arrangement is preferred, the storage tank is to be located at the same height as a service tank to provide the necessary head and be of similar design ensuring a sloping tank floor. Refer to table A1 ‘Primary engine data’ for the cylinder lubricating oil consumption.
F2.2.5 Lubricating oil maintenance and treatment
It is very important to keep the engine lubricating oil as clean as possible. Water and solid contaminants held in suspension are to be removed using centrifugal separators operating in by-pass to the engine lubricating system as shown in figure F15 ‘Lubricating oil treatment and transfer’. Great care and attention has to be paid to the separators and filters to ensure that they work correctly. The separators are to be set up as purifiers and to be completely isolated from the fuel oil treatment systems, there is to be no possibility of cross-contamination.
F2.2.5.1 Lubricating oil separator
–
Separator type: self-cleaning purifier
–
Minimum throughput capacity
0.140 CMCR [litres/hour], CMCR in kW
–
Example: 7RT-flex50-D with CMCR at R1: 12 215 kW Minimum throughput capacity
0.140 12 215 = 1710 litres/hour
–
Rated separator capacity: the rated or nominal capacity of the separator is to be according to the recommendations of the separator manufacturer.
–
Separation temperature: 90–95°C. Please refer to the manufacturer’s instructions.
F2.2.6 Lubricating oil requirements
The products listed in table F9 ‘Lubricating oils’ were selected in co-operation with the oil suppliers and are considered the appropriate lubricants in their respective product lines for the application indicated. Wärtsilä Switzerland Ltd does not accept any liability for the quality of the supplied lubricating oil or its performance in actual service.
In addition to the oils shown in the mentioned list, there are other brands which might be suitable for the use in Wärtsilä two-stroke diesel engines. Information concerning such brands may be obtained on request from Wärtsilä Switzerland Ltd, Winterthur.
For the Wärtsilä RT-flex50-D engines which are designed with oil-cooled pistons, the crankcase oils typically used as system oil have the following properties (see also table F9, ‘Lubricating oils’):
•
SAE 30.
•
Minimum BN of 5 detergent properties.
•
Load carrying performance of the FZG gear machine method IP 334/90: FZG load stage pass 10 (fail 11).
•
Good thermal stability.
•
Antifoam properties.
•
Good demulsifying performance.
The cylinders in the engines are lubricated by a separate system, working on the once-through principle, i.e. fresh lubricating oil is directly fed into the cylinders to provide lubrication for the liners, pistons and piston rings.
For normal operating conditions, a high-alkaline marine cylinder oil of the SAE 50 viscosity grade with a minimum kinematic viscosity of 18.5 cSt at 100°C is recommended. The alkalinity of the oil is indicated by its Base Number (BN).
Note: The ‘Base Number’ or ‘BN’ was formerly known as ‘Total Base Number’ or ‘TBN’. Only the name has changed, values remain identical.
26.14.40 – Issue XII.10 – Rev. 0 F–28 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
F. Ancillary systems
Main separating piping
Transfer / dirty lub. oil pipes
Overflow / drain pipes
Air vent pipes
Remarks: Note:
1) Vent chamber in funnel.
For legend and tank capacities see table F8.
—
Air vent pipes and drain valves where necessary.
—
Air vent and drain pipes must be fully functional at all inclination angles of the ship at which the engine must be operational.
— Pipe diameters to be designed according to shipyard’s practice considering component 340.994a/1 manufacturers recommendations.
Fig. F15 Lubricating oil treatment and transfer system
Wärtsilä Switzerland Ltd F–29 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
001
Residue oil tank 002 Suction filter 003 Lubricating oil pump (one for transfer and separator service, one for separator service) 004 Lubricating oil heater with relief valve and temperature control 005 Self-cleaning centrifugal separator 006 Clean lubricating oil tank 007 Dirty lubricating oil tank 008 Air vent manifold 010 Deck connection 011 Float non return valve 340.994a/2
Number of cylinders
5
6
7
8
Main engine RT-flex50-D -RT
power speed
kW rpm
8 725
10 470
124
12 215
13 960
Dirty lubricating oil tank 1)
cap.
m3
12
14
16
18
Clean lubricating oil tank 1)
cap.
m3
12
14
16
18
Residue oil tank
cap.
m3
depending on ship’s requirement
Remarks: 1) The capacity can be proportionally reduced to actual CMCR. Table F8 Lubricating oil treatment and transfer system data
Servo oil filter back flushing treatment Back flushing pipe
F20.0079
from the automatic servo filter fitted on engine Max. oil level Suction pocketLub. oil separator pipe Back flushing pipe CL CL Engine driving end
Fig. F16 Servo oil filter back flushing treatment
26.14.40 – Issue XII.10 – Rev. 0 F–30 Wärtsilä Switzerland Ltd
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
F2.2.7 List of lubricating oils
The application of the lubricants listed in tables F9 and F10 must be in compliance with the Wärtsilä general lubricating oil requirements and recommendations.
The supplying oil company undertakes all responsibility for the performance of the oil in service to the exclusion of any liability of Wärtsilä Switzerland Ltd.
Global brands of lubricating oils
Oil Supplier
System oil
Cylinder oil a) fuel with more than 1.5% sulphur recommended oils of BN 70–80
Cylinder oil b) fuel with less than 1.5% sulphur recommended oils of BN 40
BP Castrol
Energol OE-HT 30 CDX 30
Energol CLO 50M Cyltech 80 AW Cyltech 70
Energol CL-DX 405 Energol CL 505 c) Cyltech 40 SX Cyltech 50 S c)
Chevron (FAMM, Texaco, Caltex)
Veritas 800 Marine 30
Taro Special HT 70
Taro Special HT LS 40
ExxonMobil
Mobilgard 300 Exxmar XA
Mobilgard 570 Exxmar X 70
Mobilgard L 540
Total
Atlanta Marine D 3005Atlanta 3005
Talusia HR 70
Talusia LS 40
Talusia Universal d)
Shell
Melina S30 Melina 30
Alexia 50 1)
Alexia LS 1)
Above mentioned cylinder lubricating oils – except those marked with 1) – have passed the Wärtsilä Switzerland “LOQuS” quality requirements (Lubricating Oil Qualitiy Survey), including global product consistency. 1) These cylinder lubricants were not tested with LOQuS. 2009-11-09
Remarks: a) Between 1.5% and 2.0% sulphur in fuel, also BN 40 can be used without problems. b) Between 1.0% and 1.5% sulphur in fuel, also BN 70 can be used, but only for a short period with a low feed rate. c) This BN 50 cylinder lubricant ca be used up to 3.0% sulphur in the fuel. d) This BN 57 cylinder lubricant ca be used over the whole fuel sulphur range.
Table F9 Global brands of lubricating oils
Wärtsilä Switzerland Ltd F–31 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
Local brands of lubricating oils
Oil Supplier
System oil
Cylinder oil a) fuel with more than 1.5% sulphur recommended oils of BN 70–80
Cylinder oil b) fuel with less than 1.5% sulphur recommended oils of BN 40
AGIP 19th Mai 2005
Cladium 50
Punica 570 1)
––
Bardahl 17th March 2009
––
Naval 50
––
Chevron 18th September 2003
Doro AR
Taro Special 70 2)
––
FL Selenia 10th October 2006
MESYS 3006
MECO 5070
––
Gdanska 14th November 1995
––
Marinol RG 7050 2)
––
SeaLub Alliance 25th February 2009
GulfSea SuperBear 3008
GulfSea Cylcare DCA5070H
––
IOC 7th June 2006
Servo Marine 0530
Servo Marine 7050
––
Mexicana de Lubricantes 22nd August 2008
––
Marinelub 7050 2)
––
NOC 10th December 2008
Marine S30
Marine C705
––
Pertamina 1st October 2009
Medripal 307
Medripal 570
Petrobras 6th December 2006
Marbrax CAD-308
Marbrax CID-57
Marbrax CID-54-AP Marbrax CID-55 c)
PetroChina 26th February 2008
KunLun DCC3008
KunLun DCA 5070H
––
SK 3rd April 2007
Supermar AS
Supermar Cyl 70 plus
––
1) Limited to bore size of 62 cm. 2) Limited to engines built before 1995.
2009-11-09
Remarks: a) Between 1.5% and 2.0% sulphur in fuel, also BN 40 can be used without problems. b) Between 1.0% and 1.5% sulphur in fuel, also BN 70 can be used, but only for a short period with a low feed rate. c) This BN 50 cylinder lubricant ca be used up to 3.0% sulphur in the fuel.
Table F10 Local brands of lubricating oils
26.14.40 – Issue XII.10 – Rev. 0 F–32 Wärtsilä Switzerland Ltd
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
F2.2.8 Lubricating oil drain tank
The engine is designed to operate with a dry sump, the oil returns from the bearings, flows to the bottom of the crankcase and through strainers into the lubricating oil drain tank. The drain connections from the crankcase to the drain tank are arranged vertically as shown in figures F17 and F21. There is to maintain adequate drainage under sea conditions resulting in pitching and rolling. Table F12 gives the minimum angles of inclination at which the engine is to remain fully operational.
Cylinder n
LC Cylinder 1 Free endDriving end 300 mm X A B
A and B vertical lubricating oil drains
Remarks:
For measurement X see lub. oil drain tank arrangements, figures F19 to F21.
F10.5009
Fig. F17 Arrangement of vertical lubricating oil drains
Vertical lubricating oil drains to drain tank
Number of cylinders
5
6
7
8
Necessary drains
2
2
2
2
Note: The arrangement of lubricating oil drains is to comply with the relevant classification society rules.
Table F11 Number of vertical lubricating oil drains
Figures F19 to F21 show the double-bottom arrangements for the drain tank when vertical drains are fitted and the position of the air vents and external pipe connections. For details of vertical drain connections see figure F18. Arrangements with horizontal drains are optional and are available on special request only.
The drain tank is to be located beneath the engine and equipped with the following:
–
Depth sounding pipe
–
Pipe connections for lubricating oil purifiers
–
Heating coil adjacent to pump suction
–
Air vents with flame protection
All the drain pipes from the crankcase to the drain tank are to be taken as low as possible below the free surface of the oil to prevent aeration and foaming and remain below the oil surface at all times.
This is a requirement of class and strict attention is to be paid to this specification.
The amount of lubricating oil required for an initial charge of the drain tank is indicated in figure F21. The total tank size is normally 5–10 % greater than the amount of lubricating oil required for an initial filling (figure F21 “Dimensioning guide lines”).
Wärtsilä Switzerland Ltd F–33 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
Classification societies
American Bureau of Shipping 2007
Bureau Veritas 2006
China Classification Society 2002
Croatian Register of Shipping –
Det Norske Veritas 2005
Germanischer Lloyd 2006
Main and aux. engine
Abbreviations
4/1/1/7.9
C/1/1/2.4
4/1/3/B 200
2/1.1/C.1
Heel to each side
15°
15°
15°
15°
15°
Rolling to each side
±22.5°
±22.5°
±22.5°
±22.5°
±22.5°
Trim by the head 1)
5°
5°
5°
5°
5°
Trim by the stern 1)
5°
5°
5°
5°
5°
Pitching
±7.5°
±7.5°
±7.5°
±7.5°
±7.5°
Emergency sets
Abbreviation
4/1/1/7.9
C/1/1/2.4
4/1/3/B 200
2/1.1/C.1
Heel to each side
22.5°
22.5°
22.5°
22.5°
22.5°
Rolling to each side
±22.5°
±22.5°
±22.5°
±22.5°
±22.5°
Trim
10°
10°
10°
10°
10°
Pitching
±10°
±10°
±10°
±10°
±10°
Electrical installation
Abbreviation
4/1/1/7.9
C/1/1/2.4
4/8/3/B 100
2/1.1/C.1
Heel to each side
22.5°
22.5°
15°
15°
22.5°
Rolling to each side
±22.5°
±22.5°
±22.5°
±22.5°
±22.5°
Trim
10°
10°
5°
5°
10°
Pitching
±10°
±10°
±7.5°
±7.5°
±10°
Classification societies
Koran Register of Shipping 2007
Lloyd’s Register of Shipping 2006
Nippon Kaiji Koykai 2005
Polski Rejestr Statkow 2004
Registro Italiano Navale 2007
Russian Maritime Register of Shipping 2003
Main and aux. engine
Abbreviations
5/1/3.6
D/1.3
VI-1.6
C/1/1/2.4
VII-2.3
Heel to each side
15°
15°
15°
15°
15°
15°
Rolling to each side
±22.5°
±22.5°
±22.5°
±22.5°
±22.5°
±22.5°
Trim by the head 1)
5°
5°
5°
5°
5°
5°
Trim by the stern 1)
5°
5°
5°
5°
5°
5°
Pitching
±7.5°
±7.5°
±7.5°
±7.5°
±7.5°
±7.5°
Emergency sets
Abbreviation
5/1/3.6
D/1.3
VI-1.6
C/1/1/2.4
VII-2.3
Heel to each side
22.5°
22.5°
22.5°
22.5°
22.5°
22.5°
Rolling to each side
±22.5°
±22.5°
±22.5°
±22.5°
±22.5°
±22.5°
Trim
10°
10°
10°
10°
10°
10°
Pitching
±10°
±10°
±10°
±10°
±10°
±10°
Electrical installation
Abbreviation
6/2/1.9
H/1.1.7
VIII-2.1.2.2
C/2/2/1.6
XI-2.1.2.2
Heel to each side
15°
15°
15°
15°
15°
Rolling to each side
±22.5°
±22.5°
±22.5°
±22.5°
±22.5°
Trim
5°
5°
5°
5°
5°
Pitching
7.5°
±7.5°
±10°
±7.5°
±10°
Athwartships and fore-and-aft inclinations may occur simultaneously. Trim (static) and pitching (dynamic) Heel (static) Rolling (dynamic) 1) Where the ship’s length exceeds 100 m, the fore-and-aft static angle of inclination may be taken as: 500 L degrees where L = length of ship in metres
Table F12 Minimum inclination angles at which the engine is to remain fully operational
26.14.40 – Issue XII.10 – Rev. 0 F–34 Wärtsilä Switzerland Ltd
3)
4)
RT-flex50-D Marine Installation Manual
F. Ancillary systems
A–A
1), 2)
01 Welding flange Remarks:
02 Ring 1) To be aligned after engine is in final position. 03 Cover
2) item 01, 02, 05, and 06 to be pre-assembled prior to alignment.
04 Oil strainer After alignment, the item 01 (flange) can be welded in place.
05 Rubber gasket 3) Driven in oil tight with jointing compound.
06 Hexagon head screw 4) To be measured after alignment of the engine.
07 Stud 08 Hexagon nut – Items 01 to 09 are shipyard delivery. 09 Locking plate
246.182c
Fig. F18 Vertical drain connection details
Wärtsilä Switzerland Ltd F–35 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F.
Ancillary systems
5RT-flex50-D
Driving end
341.301c
6RT-flex50-D
Driving end
341.301c
01 Vertical oil drain 02 Lub. oil suction pipe 03 Air vent DN 100 04 Lub. oil separator delivery pipe 05 Man hole 08 Lub. oil pipe from turbocharger
Free end
Free end
Remarks:
1) Proposal, final position has to be determined by the shipyard in accordance with the engine builder.
2) Plate thickness, refer to figure H15.
6) DN80, proposal, final position to be determined by shipyard (at free end or driving end).
Fig. F19 Layout of vertical oil drains for 5RT-flex50-D and 6RT-flex50-D
26.14.40 – Issue XII.10 – Rev. 0 F–36 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
F. Ancillary systems
7RT-flex50-D
342.995c
Driving end
8RT-flex50-D (TC exh. side only)
342.995c
01 Vertical oil drain
02 Lub. oil suction pipe
03 Air vent DN 100
04 Lub. oil separator delivery pipe
05 Man hole
08 Lub. oil pipe from turbocharger
Free end
Remarks:
1) Proposal, final position has to be determined by the shipyard in accordance with the engine builder.
2) Plate thickness, refer to figure H15.
6) DN80, proposal, final position to be determined by shipyard (at free end or driving end).
Fig. F20 Layout of vertical oil drains for 7RT-flex50-D and 8RT-flex50-D
Wärtsilä Switzerland Ltd F–37 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
F. Ancillary systems
A (Driving end)
02 03 06 07 08 AS
Lub. oil suction pipe Air vent DN 100 Lub. oil separator suction pipe Suction pocket Lub oil pipe from turbocharger Suction area
Remarks:
3) Dimension (DN) according to fig. F12, table F7
’Lubricating oil system’.
4) Proposal, dimension depends upon the size
of the flywheel guard and oil pumps.
Final dimension to be determined by shipyard.
5) Tank design: see drawing “Dimensioning guide–lines and capacities for tank design” (see figure F22).
6) Proposal, final position to be determined by shipyard (at free end or driving end).
– The final layout of the drain tank has to comply with the rules of the relevant classification society.
341.301c/342.995c
Fig. F21 Lubricating oil drain tank, vertical oil drains.
26.14.40 – Issue XII.10 – Rev. 0 F–38 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
F. Ancillary systems
Lubricating oil tank: dimensioning guide-lines and filling process Dimensioning guide-lines and capacities for tank design
Filling process of lubricating oil tank
see table F12.
Fig. F22 Dimensioning guide-lines and filling process of the lubricating oil drain tank
Wärtsilä Switzerland Ltd F–39 26.14.40 – Issue XII.10 – Rev. 0
402.236
Marine Installation Manual F. Ancillary systems RT-flex50-D
F2.2.9 Flushing the external lubricating oil system
This instruction describes the flushing procedure for the external lubricating oil system (on the plant). The flushing of the internal lubricating oil system (on the engine) is under the responsibility of the engine builder and should be already done. If flushing of the internal lubricating oil system is required, please consult the “Instruction for Flushing of Lub. Oil and Fuel Oil System” and “Instruction for Flushing for Common Rail System” provided by the engine builder.
A correct manufacturing of the pipes avoids the presence of scales, slag and spelter. It is a fact that the expense for special welding methods, e.g. inert gas welding, is worthwhile when considering the costs of an extensive flushing procedure or the grinding and cleaning work if using normal electric arc welding or welding with electrodes. However, a thorough cleaning of the pipes before mounting is a must.
Fig. F23 Flushing the lubricating oil system
The pipes of the entire lubricating oil system on the plant side are to be flushed separately.
It is absolutely essential to ensure that the lubricating oil systems are clear of all foreign matter before circulating oil through the engine. A systematic approach is to be adopted prior to commissioning when the engine, pipework, filters, heat exchangers, pumps, valves and other components are flushed. They have to be proved absolutely clear of any dirt by observation and physical inspection. The engine crankcase and lubricating oil drain tank are to be inspected and cleaned by hand to remove all residual build-debris. Special attention is to be given to very small loose particles of welding matter such as spelter and slag.
F20.0010
Temporary flushing filter By-pass Lubricating oil inlet external lubricating oil system (on the plant) Lub. oil drain tank
26.14.40 – Issue XII.10 – Rev. 0 F–40 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
F2.2.9.1 Preparation before flushing
1.
Lead the lubricating oil connections immediately before the engine straight back into the lubricating oil drain tank by means of hoses or pipes, see fig. F23.
2.
Immediately before the engine, in the discharge pipe from the lubricating oil pumps (figure F23), install a temporary filter with a mesh size (sphere passing) of max. 0.030 mm (30 μm) and equipped with magnetic elements. Instead of filter inserts of stainless steel mesh, disposable cartridges with a nominal grade of filtration of 0.020 mm (20 μm) can also be used. The surface loading of the temporary filters should be 1–2 I/cm2h. Alternatively, the plant lubricating oil filters can be used under the condition that the filter inserts are of mesh size of max. 0.030 mm (30 μm) and magnetic elements are used during flushing. After flushing, the filter inserts are to be replaced by the original ones and the filter housing is to be cleaned. In the final step of flushing, it is advisable to fit filter bag made of cotton or synthetic fabric of mesh size 0.040 to 0.050 mm (40 to 50 μm) to the end of the hoses or pipes, in order to facilitate checking the cleanliness of the system.
3.
If the engine is supplied to the ship in subassemblies proceed as follows:
•
Blank off each of the main bearing lubricating oil supply pipes at the main bearings in such a way that absolutely no oil can enter the bearing but oil can escape between pipe and blank piece.
•
Blank off each of the crosshead lubrication linkage in that way, that absolutely no oil can enter the bearing but oil can escape between linkage and blank piece.
•
Blank off the oil supply of the axial damper in that way that absolutely no oil can enter the damper but oil can escape between pipe and blank piece.
• Disconnect and blank off all oil supply pipes to the camshaft, intermediate gears and reversing gear.
F2.2.9.2 Flushing external lubricating oil system
1.
Fill the lubricating oil drain tank with sufficient oil to cover the pump suction and heat it up to approximately 60 C using temporary immersion heaters or the heating coil of the drain tank.
2.
Circulate the oil in the drain tank using the lubricating oil separator(s) and their preheater(s) to maintain the flushing temperature to improve oil cleanliness. Operate the separator(s) until all the flushing procedures are completed.
3.
Fully open all system valves.
4.
Remove the crankcase round covers at the exhaust side and open the crankcase on the fuel side: good ventilation is to be provided to avoid condensation.
5.
Flush the system by starting the lubricating oil pumps, the main and stand-by pumps are to be alternatively operated. Before starting the pumps, the oil cooler(s) might be by-passed at the beginning of the flushing procedure. Circulate the oil through the pumps and hose connections back to the drain tank. Observe the suction and discharge pressures carefully. Do not let the pumps run hot. Observe also the pressure drop through the filters.
6.
During the flushing procedure, the pipes are to be periodically tapped to help loosen any foreign matter that may be present. If available, vibrators are to be used. All pipes used during the engine operation must be flushed, including by-pass lines and the oil cooler(s). Drain the dirt of all equipment’s (oil cooler(s), suction filters, etc.) where dirt can accumulate.
Wärtsilä Switzerland Ltd F–41 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
7. Inspect and clean the filters in the lubricating oil system periodically.
Flushing is to be continued until filter bags remain clean and no residues can be found in the filters; no metallic particles adhere to the magnetic filter inserts and no residues are detected in the bottom of the filter housing. One method to judge the oil cleanliness is described under section the F2.2.9.5. When the system proves clean, remove any filter bags and connect the oil supply pipe to the engine.
F2.2.9.3 Flushing within the engine
Flushing the engine at the shipyard (after flushing the external lub. oil system) is a safety measure and is recommended because even if the external lub. oil system appears clean, there could be pockets with contamination. If the engine is supplied to the ship in sub-assemblies, the re-assembled engine has to be flushed. If there is no need of flushing the engine, follow directly the steps described under section F2.2.9.4.
1.
Start up the lubricating oil pumps and flush through the engine for at least another 8 hours.
2.
Inspect and clean the filter in the lubricating oil system periodically.
Flushing is to be continued until the filters are absolutely clean:
•
No metallic particles adhere to the magnetic inserts and no residues are detected in the bottom of the filter housing.
•
When the lubricating oil system proves clean, remove all blank pieces and temporary flushing filters.
•
To judge the oil cleanliness, refer to the section F2.2.9.5.
3. Re-assembly of the lub. oil system
•
Drain the oil from the distribution pipe to the main bearings.
•
Inspect the inside of the pipes for eventual deposits. If clean, re-fit all oil pipes.
•
Make sure that all screwed connections are tight and secured.
•
Inspect the bottom of the crankcase and clean it if necessary.
Any pipe-connecting piece, which was not flushed before, must be cleaned separately.
F2.2.9.4 Commissioning of lubricating oil system
1.
Remove the inspection cover of the thrust bearing in main bearing girder #2.
2.
Circulate the lub. oil system for approximately two hours under normal operating pressure and temperature.
3.
Check for proper oil flow on all bearings, spray nozzles and any other engine components
(e.g. dampers).
4.
The turning gear is to be engaged to turn the engine from time to time.
5.
Check and clean the filters periodically.
6.
Carry out an inspection of the crankcase before refitting all the crankcase doors.
F2.2.9.5 Lubricating oil cleanliness
There are several criteria to judge if the lubrication oil is sufficiently clean. One of those criteria is defined by the NAS method. The NAS method counts particles of different sizes and gives an upper limit of particles of each size. For further information, please refer to the “Annual Book of ASTM Standards”.
NAS 1638 cleanliness classes are explained in table F13.
26.14.40 – Issue XII.10 – Rev. 0 F–42 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
NAS 1638 classes
Contamination (particles per 100 ml)
Particle size in micron
5–15
15–25
25–50
50–100
>100
Classes
14
4096000
729600
129600
23040
4096
13
2048000
364800
64800
11520
2048
12
1024000
182400
32400
5760
1024
11
512000
91200
16200
2880
512
10
256000
45600
8100
1440
256
9
128000
22800
4050
720
128
8
64000
11400
2025
360
64
7
32000
5700
1012
180
32
6
16000
2850
506
90
16
5
8000
1425
253
45
8
4
4000
712
126
22
4
3
2000
356
63
11
2
2
1000
178
32
6
1
1
500
89
16
3
1
0
250
44
8
2
0
00
125
22
4
1
0
Table F13 NAS 1638 cleanliness classes
Recommended limits in NAS 1638 classes
The lubricating oil can be considered as clean, if the oil contamination is within the following NAS classes:
Particle size in micron
5–15
15–25
25–50
50–100
>100
Class
13
11
10
8
3
Example:
Class 10 means that the number of particles between 25 and 50 μm should be not higher than 8100 per 100 ml oil.
Sampling position:
The oil sample should be taken in the main oil supply line before the temporary flushing filter.
F2.2.9.6 Cylinder oil supply system
It is absolutely essential to ensure that the cylinder oil system is clear of all foreign matter before connecting to the engine in order to safeguard the engine and assure proper operation. The storage and service tank are to be inspected and cleaned by hand to remove all residual build-debris, special attention is to be given to very small loose particles of welding matter such as spelter and slag. The complete piping, from the storage tank to the engine connection, has to be inspected and cleaned accordingly.
Wärtsilä Switzerland Ltd F–43 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F2.3 Fuel oil systems
A number of systems external to the engine are required to maintain heavy fuel oil and marine diesel oil in the quality required for efficient and reliable combustion.
F2.3.1 Fuel oil requirements
The values in the column Bunker limit (RMK700) in table F14 indicate the minimum quality of heavy fuel as bunkered, i.e. as supplied to the ship or installation. Good operating results have been achieved with all commercially available fuels within IS O8217 limits. However, using of fuel with lower density, ash and carbon residue content can be expected to have a positive influence on overhaul periods, by improving combustion, wear and exhaust gas composition. The fuel oil as bunkered must be processed before
F. Ancillary systems
it enters the engine. For the design of the fuel treatment plant, the relevant Wärtsilä recommendations have to be followed. The minimum centrifuge capacity is 1.2 x CMCR x BSFC / 1000 (litres/hour), which corresponds to 0.21 l/kW. The fuel oil treatment has to reduce catalyst fines and water to engine inlet limits. According to ISO 8217 it is forbidden to add foreign substances or chemical waste to the fuel, because of the hazards for the ship crew, machineries and environment. Testing for foreign substances like acids, solvents and monomers with titrimetric, infrared and chromatographic tests is not standard but recommended – because of the high likelihood of damage these substances can cause to fuel treatment, fuel pumps, fuel injection and piston running components.
Parameter
Unit
Bunker limit ISO 8217: 2005 class F, RMK700
Test method 1)
Required fuel quality Engine inlet
Density at 15ıC
[kg/m3]
max. 1010 2)
ISO 3675/12185
max. 1010
Kinematic viscosity at 50ıC
[mm2/s (cSt)]
– 700
ISO 3104
13–17 –
Carbon residue
[m/m (%)]
max. 22
ISO 10370
max. 22
Sulphur
[m/m (%)]
max. 4.5
ISO 8754/14596
max. 4.5
Ash
[m/m (%)]
max. 0.15
ISO 6245
max. 0.15
Vanadium
[mg/kg (ppm)]
max. 600
ISO 14597/IP501/470
max. 600
Sodium
[mg/kg (ppm)]
–
AAS
max. 30
Aluminium plus Silicon
[mg/kg (ppm)]
max. 80
ISO 10478/IP501/470
max. 15
Total sediment, potential
[m/m (%)]
max. 0.10
ISO 10307-2
max. 0.10
Water
[v/v (%)]
max. 0.5
ISO 3733
max. 0.2
Flash point
[°C]
min. 60
ISO 2719
min. 60
Pour point
[°C]
max. 30
ISO 3016
max. 30
Remark: 1) ISO standards can be obtained from the ISO Central Secretariat, Geneva, Switzerland (www.iso.ch). 2) Limited to max. 991 kg/m3 (ISO F-RMH700), if the fuel treatment plant (Alcap centrifuge) cannot remove water from high density fuel oil (excludes RMK grades).
– The fuel shall be free from used lube oil, a homogeneous blend with no added substance or chemical waste (ISO 8217:2005–5–1).
Table F14 Fuel oil requirements
26.14.40 – Issue XII.10 – Rev. 0 F–44 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
Viscosity
The recommended viscosity range at engine inlet is: 13–17 cSt (mm2/s). The preheating temperature to reach 15 cSt is usually reported in bunker reports, but can also be estimated from the approximate viscosity/temperature chart in the engine instruction manual. Standard 380 cSt fuel (at 50°C) must be preheated t o about 130°C.
The maximum viscosity of the bunkered fuel that can be used in an installation depends on the heating and fuel preparation facilities available (see viscosity/temperature chart in figure F24). The throughput and the temperature of the fuel going through the centrifuges must be adjusted in relation to the viscosity to achieve a good separation. Heating the fuel above 150°C to reach the recommended viscosity at engine inlet is not recommended because the fuel may start to decompose and deposit.
Carbon residue, asphaltenes sediment
The content of asphaltenes and related aromatic heavy fuel components is indicated by the carbon residue. These substances have high energy content, but high levels can however impair the combustion quality of the fuel oil, promoting increased wear and fouling of engine components. At least up to 14% asphaltenes should be no problem.
The sediment potential is an indication for fuel stability. Asphaltenes must be kept solubilised to prevent problems of sludge formation in centrifugal separators, filters and on the tank bottom. Especially the addition of paraffinic distillates could cause the asphaltenes to settle out. To minimise compatibility risks, care must be taken to avoid mixing bunkers from different suppliers and sources in storage tanks on board, onboard test kits are available to assess this risk.
Sulphur
The alkalinity of the cylinder lubricating oil, i.e. the base number (BN), should be selected with regard to the sulphur level of the fuel oil. When using a heavy fuel oil containing less than 1 % sulphur a low BN cylinder lubricant has to be used.
Ash and trace metals
Fuel oils with low contents of ash are preferable. Especially vanadium and sodium tend to promote mechanical wear, high temperature corrosion and the formation of deposits in the turbocharger and on the exhaust valve. Sodium compounds depress the melting point of vanadium oxide and sulphate salts, especially when the vanadium to sodium ratio is 3:1. High sodium levels (as well as lithium and potassium) at engine inlet can cause fouling of turbocharger components. The effect of high temperature corrosion and the formation of deposits can be counteracted by the application of ash modifiers.
Aluminium, silicon
Aluminium and silicon in the fuel oil are regarded as an indication of the presence of catalytic fines (cat fines), porcelain-like round particles used in petroleum refining. They cause high abrasive wear to piston rings and cylinder liners, over a prolonged time period when embedded in the ring and liner surface. The most dangerous are cat fines with a diameter 10 to 20 microns, which corresponds to common clearances and oil film thickness.
Cat fines tend to be attracted to water droplets and are very difficult to remove from the fuel oil, even more so when used lube oil is present. Practical experience has shown that with proper treatment in the fuel oil separator the aluminium and silicon content of 80 mg/kg can be reduced to 15 mg/kg, which is considered as just tolerable. For efficient separation, a fuel temperature as close as possible to 98°C is recommended. With more than 40 ppm cat fines in the bunkered fuel, reduced throughput in the separator is recommended.
Cat fines can accumulate in the sediment of the fuel tank from previous bunkers, and be mixed into the fuel when the sediment is churned up in bad weather. For this reason all fuels should be assumed to contain cat fines, even if this is not apparent from the fuel oil analysis, making continuous and efficient centrifugation of paramount importance.
Wärtsilä Switzerland Ltd F–45 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
Water
The water content of the fuel oil must be reduced by centrifuging and by the use of proper draining arrangements on the settling and service tanks. A thorough removal of water is strongly recommended, to ensure homogenous injection and to reduce the content of hydrophilic cat fines and sodium in the fuel oil. Sodium is not a natural oil component but marine fuel oil is often contaminated with sea water containing sodium. 1.0% sea water in the fuel oil corresponds to 100ppm sodium.
Flash point
This is a legal requirement with regard to the fire hazards of petroleum based fuels.
Pour point
The lowest operating temperature of the fuel should be kept about 5–10°C above the pour point to secure easy pumping.
Ignition quality
Contaminants, unstable fuels and incorrect injection (temperature, timing, nozzle wear) are the main reasons for incomplete or improper combustion. Some fuels cause more combustion problems by nature. These can possibly be detected by looking at the unnatural ratio between viscosity and density (CCAI), and with combustion analyzing equipment like FIA tests.
26.14.40 – Issue XII.10 – Rev. 0 F–46 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
Recommended viscosity range before fuel supply unit
Example:
To obtain the recommended viscosity before the fuel supply unit, fuel oil of 380mm2/s (cSt) at 50°C must be heated up to 130-140°C.
F10.4779
Fig. F24 Typical viscosity / temperature diagram
Wärtsilä Switzerland Ltd F–47 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
F. Ancillary systems
F2.3.2 Fuel oil treatment
Figure F25 ‘Heavy fuel oil treatment and tank layout’ is a schematic diagram of a fuel oil treatment plant and the following paragraphs are for consideration before designing a system.
Note:
For legend and additional information to this layout refer to table F15.
340.769a/2
Fig. F25 Heavy fuel oil treatment and tank system layout
26.14.40 – Issue XII.10 – Rev. 0 F–48 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D 001 HFO settling tank, heated and insulated 002 HFO service tank, heated and insulated 003 MDO service tank 004 Suction filter 005 HFO separator supply pump, with safety valve 1) 006 HFO/MDO separator supply pump, safety valve 1) 007 HFO pre-heater 008 Self-cleaning HFO separator 2) 009 Self-cleaning HFO/MDO separator 2) 010 Three-way valve, diaphragm operated 011 Sludge tank 012 Fuel oil overflow tank 013 Air vent collector 014 Air vent manifold Remarks: 1) Pump may be omitted if integrated in separator. 2) Separator capacity related to viscosity in accordance with instructions of separator manufacturer. 3) Vent chamber in funnel. 4) Connection pipe optional. — Air vent and drain pipes must be fully functional at all inclination angles of the ship at which the engine must be operational. 340.769a/2 HFO pipes, heated and insulated MDO pipes Air vent pipes Drain & overflow pipes Number of cylinders 5 6 7 8 Main engine RT-flex50-D power kW 8 725 10 470 12 215 13 960 Dspeed rpm 124 Mixing unit cap. litre acc. to figure F28 Heavy fuel oil settling tank 1) cap. m3 (0.2 x CMCR x t1) x 10–3 Heavy fuel oil service tank 1) cap. m3 (0.2 x CMCR x t1) x 10–3 Marine diesel oil service tank 2) cap. m3 (0.2 x CMCR x t2) x 10–3 Sludge tank, approx. 10% from service tank 3) cap. m3 5 6 7 8 Nominal pipe diameter A DN 40 50 50 50 B DN 32 32 32 32
Remarks: 1) based on 8 hours running time with HFO at MCR (kW)
2) based on 8 hours running time with MDO at MCR (kW)
3) Capacity depends upon contamination of fuel oil and ship owner requirements.
Table F15 Heavy fuel oil treatment and tank system data
Wärtsilä Switzerland Ltd F–49 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
F2.3.2.1 Settling tanks
Gravitational settling of water and sediment from modern heavy fuel oils is an extremely slow process due to the small difference in densities. The settling process is a function of the fuel surface area of the tank to the viscosity, temperature and density difference, heated large surface area tanks enable better separation than heated small surface area tanks.
F2.3.2.2 Service tanks
Most of the service tank design features are similar to the settling tank, having a self-closing sludge cock, level monitoring device and remote closing discharge valves to the separator(s) and engine systems. The service tank is to be equipped with a drain valve arrangement at its lowest point, an overflow to the overflow tank and recirculating pipework to the settling tank. The recirculation pipe reaches to the lower part of the service tank to guide water which may be present in the fuel after the separators (eg due to condensation or coil leakage) into the settling tank. A pipe to the separators should be provided to re-clean the fuel in case of dirty water contamination. This line should be connected just above the drain valve at the service tank bottom.
The fuel is cleaned either from the settling tank to the service tank or recirculating the service tank. Ideally when the main engine is operating at CMCR, the fuel oil separator(s) should be able to maintain a flow from the settling tank to the service tank with a continual overflow back to the settling tank. The sludge cock is to be operated at regular intervals to observe the presence of water, an important indication to the condition of the separator(s) and heating coils.
Diesel oil service tanks are similar to the heavy oil service tanks with the exception possibly of tank heating, although this may be incorporated for vessels constantly trading in cold climates.
F2.3.2.3 Centrifugal separators
Separator type – self-cleaning
It is advisable to use fuel oil separators without gravity discs to meet the process requirements of the marine diesel oil and 730 cSt heavy fuel oils. These separators are self-adjusting and do not require gravity discs to be changed for different fuel densities. The manufacturers claim extended periods between overhaul and greatly improved reliability, enabling unattended onboard operation. The minimum effective throughput capacity of the separators required is determined by the following example. The nominal separator capacity and the installation are to comply with the recommendations of the separator manufacturer.
Throughput capacity
Formula:
1.2 CMCR BSFC / 1000 [litres / hour]
Example:
7RT-flex50-D with CMCR R1
– CMCR: 12 215 kW
– BSFC: 171 g/kWh Throughput = 1.2 12 215 171 / 1000 Throughput = 2506 litres/hour
Separator arrangement
Separator without gravity disc: One of the main features of these self-adjusting separators is that only a single unit is required. This unit operates as a combined purifier/clarifier. However, as it is usual to install a stand-by separator as a back-up, it is of advantage to use this separator to improve the separation result. For the arrangement of the separators, parallel or in series, please refer to the manufacturer’s instructions.
Separator with gravity disc: These types are running in series with the fuel being purified in one and clarified in the other, two separators are required. The clarifier improves the separation result and acts as a safety device in case that the purifier is not properly adjusted. It is important when processing heavy fuel oils that
26.14.40 – Issue XII.10 – Rev. 0 F–50 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
strict adherence is made to the separator manufacturer’s recommendations. If using these separators it will be advantageous to install an extra separator for marine diesel oil only in order to avoid the changing of gravity discs when switching from HFO to MDO separation.
The marine diesel oil (MDO) separator capacity can be estimated using the same formula.
Separation efficiency
The term Certified Flow Rate (CFR) has been introduced to express the performance of separators according to a common standard. CFR is defined as the flow rate in l/h. 30 minutes after sludge discharge, at which the separation efficiency of the separator is 85 %, when using defined test oils and test particles. CFR is defined for equivalent fuel oil viscosities of 380 cSt and 700 cSt at 50 °C. More information can be found in the CEN (European Committee for Standardisation) document CWA 15375:2005 (E).
The separation efficiency is measure of the separator’s capability to remove specified test particles. The separation efficiency is defined as follows:
n 100 · 1 Cout
Cin where: n separation efficiency [%] Cout number of test particles in cleaned test oil Cin number of test particles in test oil before separator
F2.3.3 Pressurized fuel oil system
Referring to figure F26 and table F16, the fuel from the heated heavy fuel oil service tank or the unheated diesel oil service tank passes through the three-way valve (002), filter (003), and is transferred to the mixing unit (006) by the low-pressure feed pump (004). The high-pressure booster pump
(007) transfers the fuel through the endheater (008), viscosimeter (009) and filter (010) to the fuel supply unit (012). Circulation is maintained via pipework back to the mixing unit which equalizes the temperature between hotter fuel oil returning from the engine and the cooler oil from the service tank. The pressure regulating valve (005) controls the delivery of the low-pressure feed pump and ensures that the discharge pressure is 1 bar above the evaporation pressure in order to prevent entrained water from flashing off into steam. When the engine is running on marine diesel oil the steam heaters and viscosimeter are only required prior to changing over to heavy oil or immediately after changing from heavy to diesel when there is still heavy oil in the system.
Wärtsilä Switzerland Ltd F–51 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
F. Ancillary systems
Remarks:
1) The return pipe may also be led to the HFO service tank. HFO pipes, heated and insulated
— Feed pumps (item 004) must be installed below MDO and service
tanks.
MDO pipes
— All heaters to be fitted with thermometers, relief valves, drains and drip
Heating pipes trays.
Air vent pipes — Steam tracers on main engine are laid out for 7 bar saturated steam.
— Air vent and drain pipes must be fully functional at all inclination anglesDrain & overflow pipes
of the ship at which the engine must be operational.Pipes on engine / pipe connections
Note:
For additional information to this layout refer to table F16.
340.769a/1
Fig. F26 Pressurized fuel oil system
26.14.40 – Issue XII.10 – Rev. 0 F–52 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
001 Main engine (R1-rating)
002 Three-way valve, manually or remotely operated
003 Fuel oil suction filter, heated (trace heating acceptable)
004 Low-pressure feed pump
005 Pressure regulating valve
006 Mixing unit, heated and insulated (acc. to figure F28)
31
32 33 34 Fuel pipe, inlet 007 High-pressure booster pump Fuel pipe, outlet008 Fuel oil endheater Fuel leakage pipe rail unit009 Viscosimeter Fuel leakage pipe, injection valve
010 Fuel oil filter, heater (trace heating acceptable)
011 Pressure retaining valve
012 Fuel supply unit
013 Fuel rail unit
340.769a/1
Number of cylinders
5
6
7
8
Main engine RT-flex50-D -RT
power speed
kW rpm
8 725
10 470
124
12 215
13 960
Mixing unit
cap.
litre
acc. to figure F28
A
DN
40
50
50
50
B
DN
32
32
32
32
Nominal pipe diameterNominal diameter
C
DN
40
40
40
40
D
DN
65
65
65
65
E
DN
50
50
50
65
Table F16 Pressurized fuel oil system data
F2.3.4 Fuel oil system on the engine
Figure F27 is a schematic arrangement of the fuel oil system mounted on the engine. The quantity of fuel oil delivered to the supply pumps (supply unit) by the booster pump installed in the plant is greater than the amount actually required, with the excess fuel being recirculated via the mixing unit, please refer to section F2.3.3 ‘Pressurized fuel oil system’.
When commissioning the fuel system with the engine at stand-by, the fuel pressure at the supply unit inlet is to be set at 10 bar, to result in a pressure of minimum 7 bar when the engine is running at 100 % load.
Wärtsilä Switzerland Ltd F–53 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
F. Ancillary systems
TI
Thermometer local
PI
Pressure gauge local
LS PS
Level switch Pressure switch
High pressure fuel oil pipe
PT
Pressure transmitter
Low pressure fuel oil pipe
TE
Temperature element
Fuel oil leakage pipe
Fig. F27 Fuel oil system on the engine
Heating
361.969b
26.14.40 – Issue XII.10 – Rev. 0 F–54 Wärtsilä Switzerland Ltd
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
F2.3.5 Heavy fuel oil system components
Fuel oil feed pump
•
Pump type: positive displacement screw type with built-in overpressure relief valve.
•
Pump capacity: refer to tables F1–F3, the given capacity is to be within a tolerance of 0 to +20 %.
•
Fuel type: marine diesel oil and heavy fuel oil, up to 730 cSt at 50°C.
•
Working temperature: ambient to 90°C.
•
Delivery pressure: the delivery pressure is to take into account the system pressure drop and prevent entrained water from flashing off into steam by ensuring the pressure in the mixing unit is at least 1 bar above the water vapour pressure and not lower than 3 bar. The water vapour pressure is a result of the system temperature and pressure for a given fuel type. Heavier oils need more heat and higher temperatures to maintain them at the correct viscosity than lighter oils, refer to the formula and example below:
Delivery gauge pressure
= pv+ 1 + Δp1 + Δp2 [bar]
pv = water vapour gauge pressure at the required system temperature [bar] (see viscosity/temperature diagram fig. F24).
Δp1 = maximum pressure losses between the feed pumps and the mixing unit [bar].
Δp2 = maximum pressure change difference across the pressure regulating valve of the feed system between minimum and maximum flow. Refer to ‘Pressure regulating valve’ next.
Example
HFO of 730 cSt at 50°C
•
Required system temperature: approx. 145°C
•
Water vapour gauge pressure at 145°C pv= 3.2 bar
•
Pressure losses between feed pump and mixing unit: Δp1= 0.5 bar
•
Pressure change difference across the pressure regulating valve: Δp2= 0.6 bar
•
Substituting these values in the formula:
•
Delivery pressure = 3.2 + 1 + 0.5 + 0.6 = 5.3 bar
Electric motor
• The electric motor driving the fuel oil feed pumps shall be sized large enough for the power absorbed by the pump at maximum pressure head (difference between inlet and outlet pressure), maximum fuel oil viscosity (600 cSt) and the required flow.
Pressure regulating valve
•
The pressure regulating valve maintains the inlet pressure to the booster system practically constant irrespective of the actual amount of fuel consumed by the main engine and auxiliaries. It should have a flat steady state characteristic across the fuel oil recirculation flow range.
•
Valve type: self- or pilot-operated which senses the upstream pressure to be maintained through an external line. It is to be pneumatically or direct hydraulically actuated with an additional manual control for emergency operation. When using a pneumatic type, use a combined spring type to close the valve in case of air supply failure.
•
Fuel oil viscosity: 100 cSt, at working temp. (HFO 730 cSt at 50°C).
•
Maximum capacity: refer to feed pump capacity in tables F1–F3.
Wärtsilä Switzerland Ltd F–55 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
•
Minimum capacity: approximately 20% of that of the feed pump.
•
Service pressure: max. 10 bar
•
Pressure setting range: 2–6 bar
•
Inlet pressure change: ≤ 0.8 bar, between 20% and 100% flow (upstream pressure build-up over the valve capacity; between the minimum and maximum flow capacity).
•
Working temperature: ambient to 90°C
Mixing unit
•
Due to the small amount of fuel consumed there is only need of a small mixing unit. It is recommended that the tank contains approx. 65 litres. This is to avoid the change over from HFO to MDO or visa versa taking too long.
•
The mixing unit equalizes the temperature between the hotter fuel oil returning from the engine and the cooler fuel oil from the service tank, particularly when changing over from heavy fuel oil to marine diesel oil and vice versa.
•
Type: cylindrical steel fabricated pressure vessel as shown in figure F28.
•
Capacity: see figure F28.
•
Dimensions: see figure F28.
•
Service pressure: 10 bar
•
Test pressure: according to the classification society.
•
Working temperature: ambient up to 150°C.
High-pressure booster pump
•
Pump type: positive displacement screw type with built-in overpressure relief valve.
•
Pump capacity: refer to tables F1–F3, the given flow rate is to be within an allowable tolerance of 0 to +20%.
•
Inlet pressure up to 6 bar
•
Delivery head: see tables F1–F3, final delivery pressure according to the actual piping layout.
•
Working temperature: ambient up to 150°C
Electric motor (booster pump)
Refer to the remarks for electric motor for the feed
pumps (anterior page).
Fuel oil endheater
•
Heater type: steam, electric or thermal oil, tubular or plate type heat exchanger suitable for heavy oils to 730 cSt at 50°C.
•
Working pressure: max. 12 bar, pulsating on fuel oil side.
•
Working temperature: ambient up to 150°C, outlet temperature on fuel oil side.
•
Heating capacity [kW]: = 0.75 10–6 CMCR BSFC (T1 – T2)
•
Consumption of saturated steam at 7 bar gauge pressure [kg/h]: = 1.32 10–6 CMCR BSFC (T1 – T2)
•
where:
BSFC is the brake specific fuel consumption at the contract maximum continuous rating (CMCR). T1 is the temperature of the fuel oil at the viscosimeter. T2 is the temperature of the fuel oil from the service tank.
•
Example: 7RT-flex50-D with CMCR at R1: 12 215 kW at 124 rpm, BSFC of 171 g/kWh, using 730 cSt fuel, at a system temperature of 150°C (T1), assuming the heavy fuel oil service tank is kept at a steady temperature of 85°C (T2). Heater capacity required: = 0.75 10–6 12 215 171 (150 – 85) = 101 kW Consumption of saturated steam at 7 bar gauge pressure: = 1.32 10–6 12 215 171 (150 – 85) = 179 kg/h
The viscosimeter monitors the fuel viscosity prior to the supply unit and transmits signals to the heater controls to maintain this viscosity by regulating the fuel temperature after the endheater.
26.14.40 – Issue XII.10 – Rev. 0 F–56 Wärtsilä Switzerland Ltd
Marine Installation Manual F. Ancillary systems RT-flex50-D Capacity : 65 l Design pressure : 10 bar Service temperature : 150 °C DN50 DN50 480 240 220 Approx. 900 A B C DN300
001 Outlet
002 Inlet, return pipe
Remarks:
003 Inlet, from feed pump 1) Mounting brackets for fixation on floor plate. The mixing unit must be fitted unsupported.
004 Vent 005 Drain — Configuration and dimension of the mixing unit have to comply with the relevant classification societies/rules.
006 Heating coil
007 Insulation
008 Mounting brackets 1)
Fig. F28 Fuel oil system mixing unit
Number of cylinders
5
6
7
8
A
DN
65
65
65
65
Nominal pipe diameter
B
DN
40
40
40
40
C
DN
50
50
50
65
Table F17 Fuel oil system mixing unit: nominal pipe diameters for connections A, B, C
Wärtsilä Switzerland Ltd F–57 26.14.40 – Issue XII.10 – Rev. 0
350.697
Marine Installation Manual F. Ancillary systems RT-flex50-D
F2.3.5.1 Fuel oil filter
A mesh size of maximum 34 microns (sphere passing mesh) is the absolute minimum requirement for the fuel oil filter. This specified filtration grade conforms to a high reliability and optimal cleaning efficiency of the centrifugal separators (see the note on the next page).
Arrangement before the supply unit
Figure F29 A: High-temperature (booster circuit). This filter is extremely important to protect the supply unit and is to be installed as close as possible to the inlet of the supply unit. The absolute minimum requirements are met by using either one of the following filters: duplex filter or automatic back-flushing filter.
Filter type:
Change-over duplex (full flow)
Heatable designed for in-service cleaning, fitted with differential pressure gauge and high differential-pressure alarm contacts.
or Automatic back-flushing filter
Heated, with differential pressure gauge and differential pressure alarm contacts. Designed for automatic in-service cleaning, continuous or discontinuous back-flushing, using filtered fuel oil or compressed air techniques.
A) Arrangement before the supply unit
Further specifications/properties of the filters:
•
Working viscosity: 13–17 cSt.
•
Flow rate: booster pump capacity, refer to tables F1–F3. The given capacities cover the needs of the engine only. If an automatic back-flushing filter type is installed, the feed and booster pump capacities must be increased by the quantity needed for the back-flushing of the filter.
•
Service pressure: max. 12 bar at filter inlet.
•
Test pressure: specified by classification society.
•
Permitted differential pressure at 17 cSt: clean filter: max. 0.2 bar, dirty filter: 0.6 bar, alarm setting: max. 0.8 bar.
•
Minimum bursting pressure of filter insert: max. 8 bar differential across filter.
•
Working temperature: ambient up to 150°C.
•
Mesh size: max. 0.034 mm, sphere passing mesh.
•
Filter insert material: stainless steel mesh (CrNiMo).
B) Arrangement in the feed system
Automatic
back-flushing filter or duplex filter
Duplex
filter Automatic back-flushing filter
Fig. F29 Filter arrangements
26.14.40 – Issue XII.10 – Rev. 0 F–58 Wärtsilä Switzerland Ltd
245.346
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
Arrangement in the feed system
Figure F29 B: If the requirement is for an automatic back-flushing filter, it is best to fit it on the low-temperature side in the discharge from the feed pumps. Locating the filter at this point reduces the risk of clogging due to asphaltene coagulation.
Back-flushing filter
•
Working viscosity: 100 cSt, for HFO of 730 cSt at 50°C.
•
Flow rate: feed pump capacity, refer to tables F1–F3. The given capacities cover the needs of the engine only. The feed pump capacity must be increased by the quantity needed for the back-flushing of the filter.
•
Service pressure at filter inlet, after feed pumps: 10 bar.
•
Test pressure: specified by classification society.
•
Permitted differential pressure at 100 cSt: clean filter: max. 0.2 bar, dirty filter: 0.6 bar, alarm setting: max. 0.8 bar.
•
Minimum bursting pressure of filter insert: max. 8 bar differential across filter.
•
Working temperature: ambient up to 90°C.
•
Mesh size: max. 0.034 mm, sphere passing mesh.
•
Filter insert material: stainless steel mesh (CrNiMo).
Duplex filter
•
The installation of the automatic back-flushing filter in the low-temperature side does not replace the need for a duplex filter fitted immediately before the supply unit.
•
The same technical data as specified for the arrangement before the supply unit are applied. The filter mesh size (sphere passing) in this case is max. 0.060 mm (60 μm).
Note:
Cat fines may, for various reasons, be present in the fuel when entering the engine. Excessive piston ring and cylinder liner wear on all cylinders is often caused by cat fines in the fuel oil. It is obvious that other exposed parts e.g. fuel pumps, fuel injection valves, piston rod and piston rod stuffing boxes will be also damaged if a high content of cat fines is present in the fuel oil. The use of an automatic self-cleaning filter with a mesh size of 10 microns installed on the low-temperature side of the pressurized fuel oil system will additionally protect the engine from serious damages by removing cat fines which may have passed through the separator(s). This filter will also indicate changes in the separator efficiency and/or in the fuel quality. Such an additional investment should especially be considered where, due to the ship’s trading route, the risk of bunkering fuel with a high cat fines content is prevalent.
Wärtsilä Switzerland Ltd F–59 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
F2.3.6 Flushing the external fuel oil system
This instruction describes the flushing procedure for the external fuel oil system (on the plant). The flushing of the internal fuel oil system (on the engine) is under the responsibility of the engine builder and should be already done. If flushing of the internal fuel oil system is indicated, please consult the “Instruction for Flushing of Lub. Oil and Fuel Oil System” and “Instruction for Flushing for Common Rail System” provided by the engine bulder.
A correct manufacturing of the pipes avoids the presence of scales, slag and spelter. It is a fact that the expense for special welding methods, e.g. inert gas welding, is worthwhile when considering the costs of an extensive flushing procedure or the grinding and cleaning work if using normal electric arc welding or welding with electrodes. A thorough cleaning of the pipes before mounting is a must.
F20.0012
By-pass with temporary flushing filter to service tank from service tank external fuel oil system (on the plant) Supply unit 31 32
Fig. F30 Fuel oil system flushing
It is absolutely essential to ensure that the fuel oil systems are clear of all foreign matter before circulating fuel oil through to the engine. A systematic approach is to be adopted prior to commissioning when the tanks, pipework, filters, end-heaters, pumps, valves and other components are flushed and proved clear by observation and physical inspection. All fuel oil tanks are to be inspected and cleaned by hand to remove all residuals build-debris; special attention is to be paid to very small loose particles of welding matter such as spelter and slag.
The pipes of the entire fuel oil system on the plant side are to be flushed separately.
26.14.40 – Issue XII.10 – Rev. 0 F–60 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
F2.3.6.1 Preparation before flushing
1.
By-pass the fuel oil connections immediately before the supply unit by means of temporary hoses or pipes as shown in figure F30.
2.
Install in the by-pass line a temporary filter with a mesh size (sphere passing mesh) of max.
0.03 mm (30 μm) and equipped with magnetic elements. Alternatively, the plant fuel oil duplex filter, if available, can be used under the condition that the filter inserts are of mesh size (sphere passing mesh) of max. 0.03 mm (30 μm). After flushing the filter, inserts are to be replaced by the original ones and the filter housing to be cleaned.
F2.3.6.2 Flushing procedure
1.
Fill the service tank with sufficient marine diesel oil (MDO).
2.
Circulate the MDO in the service tank using the separator(s) and pre-heater(s) to maintain the cleanliness and the MDO temperature at approximately 30C. Operate the separator(s) until the flushing procedure is completed.
3.
Circulate the MDO through the whole fuel oil system back to the service tank by running the feed and booster pump. Both pumps (feed and booster pump) must be in operation to ensure a correct fuel oil circulation through the whole fuel oil system. As the capacity of the booster pump(s) is higher than the one of the feed pump(s), part of the fuel returns, via the mixing tank, directly to the booster pump. The fuel must circulate freely in the return pipe to the service tank and from the feed pump to the mixing unit. The main and stand-by pumps are to be alternatively operated. Observe the suction and discharge pressure carefully; do not let run the pumps hot. Observe the pressure drop through the filters too.
4. During the flushing procedure, the pipes are to be periodically tapped to help loosen any foreign matter that may be present. If available, vibrators are to be used. All pipes used during the engine operation must be flushed, including by-pass lines. Inspect and clean all filters in the fuel oil system periodically. Drain the dirt of all equipments (mixing unit, endheater, etc.) where dirt can accumulate.
Flushing is to be continued until absolutely no residues can be found in the filters:
No metallic particles adhere to the magnetic inserts and no residues are detected in the bottom of the filter housing.
When the fuel oil system proves clean, the temporary flushing equipment can be removed and the engine connected to the fuel oil system.
Wärtsilä Switzerland Ltd F–61 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F2.4 Starting and control air systems
Compressed air is required for engine starting, engine control, exhaust valve air springs, washing plant for the scavenge air coolers and general services.
F2.4.1 System layout
The starting and control air system shown in figure F31 is valid for five- to eight-cylinder engines and comprises two air compressors, two air receivers and systems of pipework and valves connected to the engine starting air manifold.
F2.4.2 Capacities of air compressor and receiver
The capacity of the air compressor and receiver depends on the total inertia (JTot) of the rotating parts of the propulsion system too.
F. Ancillary systems
•
Total inertia = engine inertia + shafting and propeller inertia => (JTot) = (JEng) + (JS+P).
•
Propeller inertia includes the part of entrained water.
•
Engine inertia (JEng) see table F18.
•
Relative inertia JRel = JTot / JEng.
The air receiver and compressor capacities of table F18 refer to a relative inertia, (JRel = 2.0). For other values than 2.0, the air receiver and compressor capacities have to be calculated with the winGTD program. It provides the capacity of the air compressor and receiver for relative inertia values
(JRel). Table F18 outlines the basic requirements for a system similar to figure F31 ‘Starting and control air system’ for maximum engine rating. Our winGTD program (available on the Licensee Portal) enables to optimise the capacities of the compressors and air receivers for the contract maximum continuous rating (CMCR).
Starting air
Air receivers
Air compressors
JEng 2)
Number of starts requested by the classification societies for reversible engines
12 1)
12 1)
Pressure rangePressure range
Max. air pressure 30 [bar]
Free air delivery at 30 [bar]
No. of cylinders
Number x volume [m3]
Number x capacity [Nm3/h]
[kgm2]
5
2 x 1.7
2 x 50
27 900
6
2 x 1.9
2 x 59
33 000
7
2 x 2.2
2 x 68
38 100
8
2 x 2.5
2 x 77
43 500
Remark: 1) 12 consecutive starts of the main engine, alternating between ahead and astern. For other numbers of starts (engines with CPP installed), please use winGTD program. 2) Data given for engines without damper and front disc on crankshaft but included smallest flywheel.
Table F18 Air receiver and air compressor capacities
26.14.40 – Issue XII.10 – Rev. 0 F–62 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D Remarks: 1) Dimensions depending on consumption of auxiliary engines and board purposes. — Drain plugs and drain cocks where necessary. 15 1) 15 001 002002 003003 004 125 Compressed air supplied from board. Purity class: 2-4-2 according to ISO 8573-1 (2007-02-01). 15
001 Main engine RT-flex50-D 002 Starting air compressor, 25/30 bar 003 Starting air receiver, 25/30 bar 004 Distribution pipe with automatic starting air shut-off valve
340.766b
Fig. F31 Starting and control air system
41
43 Starting air inlet
Control air inlet (for control system and air spring)
Starting air feed pipes Control air pipes Ancillary equipment pipes Drain pipes Pipes on engine / pipe connections
Wärtsilä Switzerland Ltd F–63 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
F2.4.3 Starting and control air system specification
Starting air compressors
•
Type: water cooled two stage with intercooler and oil / water separator. The discharge air temperature is not to exceed 90°C and the air supply to the compressors is to be as clean as possible without oil vapour.
•
Capacity: refer to table F18.
•
Delivery gauge pressure: 30 or 25 bar.
Starting air receivers
•
Type: fabricated steel pressure vessels having domed ends and integral pipe fittings for isolating valves, automatic drain valves, pressure reading instruments and pressure relief valves.
•
Capacity: refer to table F18.
•
Working gauge pressure: 30 or 25 bar.
F2.4.3.1 Control air system supply
The control air is supplied from the board instrument air supply system (see figure F31) providing air at 8 bar gauge pressure. The air quality should comply with the compressed air purity class: 2-4-2 according to ISO 8573-1 (2007-02-01).
(Capacity Nm3/h)
5
6
7
8
Control system up to
21.0
21.0
21.0
21.0
Exhaust valve air spring
12.0
14.4
16.8
19.2
Total
33.0
35.4
37.8
40.2
Table F19 Control air capacities
F2.4.4 General service and working air
General service and working air for driving air powered tools and assisting in the cleaning of scavenge air coolers is also provided by the board instrument air supply system.
26.14.40 – Issue XII.10 – Rev. 0 F–64 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
F2.5 Leakage collection system and washing devices
Figure F32 ‘Leakage collection and washing system layout’ is suitable for the whole engine series, with the same pipe sizes independent of the number of cylinders. Dirty oil collected from the piston underside is led under pressure of approximately 2.8 bar to the sludge oil trap (002) and then to the sludge oil tank (004). The purpose of the sludge oil trap is to retain the large amount of solid parts which may be contained in the dirty oil and to reduce the pressure by means of an orifice or throttling disc (003) fitted at its outlet so that the sludge oil tank (004) is under atmospheric pressure. The sludge oil trap is shown in figure F33. The dirty oil from the piston rod stuffing box, which consists of waste system oil, cylinder oil, metallic particles and small amounts of combustion products, is led directly to the sludge tank. Condensate from scavenge air is formed when the vessel is operating in a humid climate and is to be continually drained from the scavenge air receiver to avoid excessive piston ring and liner wear. As a guide, the largest amount of this condensate which is to be dealt with under extremely humid conditions is indicated on the system layout data (table F20).
001 Main engine RT-flex50-D
002 Sludge oil trap (for details, see figure F33)
Remarks:
003 Throttling disc 1) One unit per turbocharger004 Sludge or appropriate tank 3) 2) Depending on the relative air humidity and temperature005 Throttling disc before and after the scavenge air cooler condensate may006 Air vent manifold
be knocked out. Under extreme ambient conditions a 007 Scavenge air cooler washing plant 1) maximum condensate quantity of up to 0.16 kg/kW/h may be produced.
008 Turbocharger compressor washing plant 1) 3) Available capacity approx. 2 m3
009 Turbocharger turbine washing plant 1) 010 Turbocharger turbine dry cleaning plant (optional) 1)
— Please note: For Mitsubishi MET turbochargers only DRY CLEANING 011 Condensate collector method applies.
012 venting unit
— Air vent and drain pipes must be fully functional at all013 Reduction piece
10
12 14 15 19 21 22 23 20 25 28 30 40 inclination angles of the ship at which the engine must be Collect. main condensate water SAC venting, outlet operational. Cooling water drain pipe Water/air pipe cleaning plant Washing water pipes TC dirty water, outlet Dirty oil drain pipesCondensate water from water separator and SAC 2) Compressed air pipes
Washing water outlet from SAC
Air vent pipes
Collector main oilwater water separator
Drain & overflow pipes Pipes on engine / pipe connections
Oil system TC, venting
Common dirty oil drain from engine
Leakage oil from piston underside
Dirty oil from piston rod stuffing box (on fuel side)
Venting pipe TC outlet 1)
Working air inlet SAC washing plant
340.951e
Table F20 Leakage collection and washing system
Wärtsilä Switzerland Ltd F–65 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
F. Ancillary systems
Note: Refer to table F20 for additional information and legend to this layout.
340.951e
Fig. F32 Leakage collection and washing system
26.14.40 – Issue XII.10 – Rev. 0 F–66 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
F. Ancillary systems
Working temperature : 80 °C Remarks:
Working pressure : 4 bar 1) The orifice has to be designed as shown.
Capacity : approx. 53 l
2) Location of pipes with regard to each other has to be observed. 245.946f
Fig. F33 Sludge oil trap
Wärtsilä Switzerland Ltd F–67 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
Engine exhaust uptakes can be drained automatically using a system as shown in figure F34.
F10.1959
Fig. F34 Arrangement of automatic water drain
26.14.40 – Issue XII.10 – Rev. 0 F–68 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D dA dA d1) 2)
F2.6 Exhaust gas system
To optimize the exhaust gas systems, please refer pipe diameter’, figure F36 ‘Estimation of exhaust to the following calculations. The calculations gas density’ and figure F37 ‘Estimation of exhaust based on figure F35 ‘Determination of exhaust pipe diameter’ are given as an example only:
Remarks:
1) The purpose for this bypass is to allow engine operation after a turbocharger failure. During normal operation it is blinded off. The bypass can be omitted if agreed with the classifica tion society and the owner.
2) The flange connection of the compensator can be designed as follows:
Approx. 10mm thick To suit pipe flange
Open port Blinded port
F10.5319
Fig. F35 Determination of exhaust pipe diameter
Example:
Estimation of exhaust gas pipe diameters for 5) Exhaust gas volume flow: Wärtsilä 7RT-flex50-D, CMCR (R1) specified
Pipe A:
and for design (tropical) conditions:
86 083
Power (R1) = 12 215 kW qVA qm 133 061 m3h
EXH nTC 0.646
Speed (R1) = 124 rpm
Recommended gas velocity: 6) Exhaust pipe diameters: Pipe A: WA = 40 m/s
Pipe diameters are (approx. according to
figure F37):
1) Exhaust gas mass flow: 86 083 kg/h (according to table F1–F3) dA = 1080 mm
or calculated:
2) Exhaust gas temperature: 281 °C (acc. to table F1–F3) qV
dpipe 18.81
[mm]
wpipe
3) Exhaust gas density (assumed back pressure on turbine outlet 7) Select the calculated or the next largerp = 30 mbar (figure F36): diameter available, for example:
EXH 0.646 kgm3 dA= 1100 mm
4) Number of turbochargers (according to Check the back pressure drop of the whole ex-figure C8): haust gas system (not to exceed 30 mbar). nTC = 1
Wärtsilä Switzerland Ltd F–69 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
F10.4682 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 Fig. F36 Estimation of exhaust gas density
0.740
0.720 0.700 0.680 0.660 0.640 0.620 0.600 0.580 0.560 0.540 30 20 10 0 tEaT [C] pEXH [kg/m3] Δp [mbar]
qV
[m3/h] 600 000
500 000 450 000 400 000
350 000
300 000
250 000
200 000 180 000
160 000
140 000
120 000
100 000
90 000
80 000
70 000
dpipe
60 000
[mm]
500 600 700 800 900 1000 1200 1400 2000 2500 3000 4000
10
20304050 w [m/sec]
F10.4683 dA
Fig. F37 Estimation of exhaust pipe diameters
26.14.40 – Issue XII.10 – Rev. 0 F–70 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
F2.7 Air vents
The air vent pipes of the ancillary systems must be fully functional at all inclination angles of the ship at which the engine must be operational. This is normally achieved if the vent pipes have a continuous, uninterrupted inclination of 5 % minimum. Such an arrangement enables the vapour to separate into its air and fluid components, discharging the air to atmosphere and returning the fluid to its source.
Wärtsilä Switzerland Ltd F–71 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
F2.8 Engine-room ventilation
The engine-room ventilation is to conform to the re-in diesel engined ships; Design requirements and
quirements specified by the legislative council of basis of calculations’.
the vessel’s country of registration and the classi-Based on ISO 8861, the radiated heat, required air
fication society selected by the ship owners. Cal-flow and power for the layout of the engine-room
culation methods for the air flow required for com-ventilation can be obtained from the winGTD probustion and air flow required to keep the machinery gram, see section C7.
spaces cool are given in the international standard The final layout of the engine-room ventilation is,
ISO 8861 ‘Shipbuilding – Engine-room ventilation however, at the discretion of the shipyard.
Figure F38 is a typical arrangement for direct suction of combustion air.
F10.3677
Fig. F38 Direct suction of combustion air – main and auxiliary engine
26.14.40 – Issue XII.10 – Rev. 0 F–72 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
F3 Ambient temperature consideration
F3.1 Engine air inlet – Operating temperatures from 45°C to 5°C
Due to the high compression ratio, the diesel engine RT-flex50-D does not require any special measures, such as pre-heating the air at low temperatures, even when operating on heavy fuel oil at part load, idling and starting up. The only condition which must be fulfilled is that the water inlet temperature to the scavenge air cooler must not be lower than 25°C.
This means that:
•
When combustion air is drawn directly from the engine room, no pre-heating of the combustion air is necessary.
•
When the combustion air is ducted in from outside the engine room and the air suction temperature does not fall below 5°C, no measures have to be taken.
The central fresh water cooling system permits the recovery of the engine’s dissipated heat and maintains the required scavenge air temperature after the scavenge air cooler by recirculating part of the warm water through the low-temperature system.
F3.1.1 Scavenge air system – arctic
conditions at operating temperatures
below 5°C
Under arctic conditions the ambient air temperatures can meet levels below –50°C. If the combustion air is drawn directly from outside, these engines may operate over a wide range of ambient air temperatures between arctic condition and tropical (design) condition (45°C).
To avoid the need of a more expensive combustion air pre-heater, a system has been developed that enables the engine to operate directly with cold air from outside.
If the air inlet temperature drops below 5°C, the air density in the cylinders increases to such an extent that the maximum permissible cylinder pressure is exceeded. This can be compensated by blowing off a certain mass of the scavenge air through a blow-off device as shown in figure F39.
F10.1964 Engine Air filter Air intake casing Turbocharger Scavenge air cooler
Blow-off valves
Fig. F39 Scavenge air system for arctic conditions
There are up to three blow-off valves fitted on the scavenge air receiver. In the event that the air inlet temperature to the turbocharger is below +5°C the first blow-off valve vents. For each actuated blow-off valve, a higher suction air temperature is simulated by reducing the scavenge air pressure and thus the air density. The second blow-off valve vents automatically as required to maintain the desired relationship between scavenge and firing pressures. Figure F40 shows the effect of the blow-off valves to the air flow, the exhaust gas temperature after turbine and the firing pressure.
Wärtsilä Switzerland Ltd F–73 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
Two blow-off One blow-off Blow-off valves closed valves open valve open normal operation
m [kg/kwh]
0.6
0.4
0.2
0
t [°C]
0
–20
–40
–60
p [bar]
10
5
0
–50–40–30–20–10 0 10 20 30 40[°C]
Exhaust gas temp.
Specific air consumption Firing pressure
Suction air temperature
F10.1965
Fig. F40 Blow-off effect under arctic conditions
Control of the blow-off valves is effected by means of a signal generated by the temperature sensors in the inlet piping. Care is to be taken that no foreign particles in the form of ice gain access to the turbocharger compressor in any way, because they could lead to its destruction. Reduction of the pipe’s cross sectional area by snow is also to be prevented.
The scavenge air cooling water inlet temperature is to be maintained at a minimum of 25°C. This means that the scavenge air cooling water will have to be pre-heated in the case of low power operation. The required heat is obtained from the lubricating oil cooler and the engine cylinder cooling.
26.14.40 – Issue XII.10 – Rev. 0 F–74 Wärtsilä Switzerland Ltd
running time,
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
F3.2 Air filtration
In the event that the air supply to the machinery spaces has a high dust content in excess of
0.5 mg/m3 which can be the case on ships trading in coastal waters, desert areas or transporting dust-creating cargoes, there is a higher risk of increased wear to the piston rings and cylinder liners.
The normal air filters fitted to the turbochargers are intended mainly as silencers and not to protect the engine against dust.
The necessity for the installation of a dust filter and the choice of filter type depends mainly on the concentration and composition of the dust in the suction air.
Where the suction air is expected to have a dust content of 0.5 mg/m3 or more, the engine must be protected by filtering this air before entering the engine, e.g., on coastal vessels or vessels frequenting ports having high atmospheric dust or sand content.
Table F21 Guidance for air filtration
Marine installations have seldom had special air filters installed until now. Stationary plants on the other hand, very often have air filters fitted to protect the diesel engine.
The installation of a filtration unit for the air supply to the diesel engines and general machinery spaces on vessels regularly transporting dust-creating cargoes such as iron ore and bauxite, is highly recommended.
The following table F21 and figure F41 show how the various types of filter are to be applied.
Normal Most sizesMost frequent particle sizes
Atmospheric dust concentration
Normal shipboard requirement Short ofShort period < 5 % of < 0.5 mg/m3
Alternatives necessary for very special circumstances
frequently to permanently ≥ 0.5 mg/m3
permanently > 0.5 mg/m3
> 5 μm
Standard turbocharger filter sufficient
Oil wetted or roller screen filter
Inertial separator and oil wetted filter
< 5 μm
Standard turbocharger filter sufficient
Oil wetted or panel filter
Inertial separator and oil wetted filter
Valid for
the vast majority of installations
These may likely apply to only a very few extreme cases. For example: ships carrying bauxite or similar dusty cargoes or ships routinely trading along desert coasts.
Wärtsilä Switzerland Ltd F–75 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
Filter surface [m2]
70
60
50
40
30
20
16
12
10
8
6
6
8 1012 16 202530 40 50
7RT-flex50-D: PR1 = 12.215 MW
Oil wetted and panel filters in series
Panel filter
Oil wetted filter
Roller screen filter
Inertial separator
Installed engine power [MW]
Required filteration area for pressure drop < 20 mbar
F20.0075
Fig. F41 Air filter size
26.14.40 – Issue XII.10 – Rev. 0 F–76 Wärtsilä Switzerland Ltd
di-
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
F4
Pipe size and flow details
F4.1
Pipe velocities
The velocities given in table F22 are for guidance
figures to those stated may be acceptable when
only. They have been selected with due regard to
short piping runs, water properties and ambient
friction losses and corrosion. Increased velocity
temperature, are taken into consideration.
Medium Sea-water Fresh water Lubricating oil Marine diesel oil Heavy fuel oil Nominal diameter Pipe material steel galvanized mild steel mild steel mild steel mild steel pipe ameter pump-side suction delivery suction delivery suction delivery suction delivery suction delivery 32 [m/sec] [m3/h] 1.0 2.9 1.4 4.1 1.5 4.3 1.5 4.3 0.6 1.7 1.0 2.9 0.9 2.6 1.1 3.2 0.5 1.4 0.6 1.7 40 [m/sec] [m3/h] 1.2 5.4 1.6 7.2 1.7 7.7 1.7 7.7 0.7 3.2 1.2 5.4 1.0 4.5 1.2 5.4 0.5 2.3 0.7 3.2 50 [m/sec] [m3/h] 1.3 9.2 1.8 12.5 1.9 13.5 1.9 13.5 0.8 5.7 1.4 10 1.1 7.8 1.3 9.2 0.5 3.5 0.8 5.7 65 [m/sec] [m3/h] 1.5 18 2.0 24 2.1 25 2.1 25 0.8 9.6 1.5 18 1.2 14.5 1.4 16.5 0.6 7.2 0.9 11 80 [m/sec] [m3/h] 1.6 29 2.1 38 2.2 40 2.2 40 0.9 16.5 1.6 29 1.3 23.5 1.5 27 0.6 11 1.0 18 100 [m/sec] [m3/h] 1.8 51 2.2 62 2.3 65 2.3 65 0.9 26 1.6 45 1.4 40 1.6 45 0.7 20 1.2 34 125 [m/sec] [m3/h] 2.0 88 2.3 102 2.4 106 2.5 110 1.1 49 1.7 75 1.5 66 1.7 75 0.8 35 1.4 62 150 [m/sec] [m3/h] 2.2 140 2.4 153 2.5 159 2.6 165 1.3 83 1.8 115 1.5 95 1.8 115 0.9 57 1.6 108 200 [m/sec] [m3/h] 2.3 260 2.5 283 2.6 294 2.7 305 1.3 147 1.8 204 –– –––––– ––––Aluminium brass [m/sec] [m3/h] 2.6 294 250 [m/sec] [m3/h] 2.5 442 2.6 460 2.7 477 2.7 477 1.3 230 1.9 336 –– –––––––––– ––––Aluminium brass [m/sec] [m3/h] 2.7 477 300 [m/sec] [m3/h] 2.6 662 2.6 662 2.7 687 2.7 687 1.3 331 1.9 484 –– –––––––––– ––––Aluminium brass [m/sec] [m3/h] 2.8 713 350 [m/sec] [m3/h] 2.6 900 2.6 900 2.7 935 2.7 935 1.4 485 2 693 –– –––––––––– ––––Aluminium brass [m/sec] [m3/h] 2.8 970 400 [m/sec] [m3/h] 2.6 1176 2.6 1222 2.7 1222 2.7 1222 1.4 633 2 905 –– –––––––––– ––––Aluminium brass [m/sec] [m3/h] 2.8 1267 450 [m/sec] [m3/h] 2.6 1489 2.7 1546 2.7 1546 2.7 1546 1.4 802 2 1145 –– –––––––––– ––––Aluminium brass [m/sec] [m3/h] 2.9 1660 500 [m/sec] [m3/h] 2.6 1838 2.7 1909 2.7 1909 2.7 1909 1.5 1060 2.1 1484 –– –––––––––– ––––Aluminium brass [m/sec] [m3/h] 2.9 2050 ––––
Note: The velocities given in the above table are guidance figures only. National standards can also be applied. Table F22 Recommended fluid velocities and flow rates for pipework
Wärtsilä Switzerland Ltd F–77 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
F4.2 Piping symbols
F10.1910
Fig. F42 Piping symbols 1
26.14.40 – Issue XII.10 – Rev. 0 F–78 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
F10.1911
Fig. F43 Piping symbols 2
Wärtsilä Switzerland Ltd F–79 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
F10.1905
Fig. F44 Piping symbols 3
26.14.40 – Issue XII.10 – Rev. 0 F–80 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
F. Ancillary systems
F5 Engine pipe connections
F5.1 RT-flex50-D TC exh. side
The following selection of the pipe connection The drawings of other combinations (number of plans doesn’t cover all available executions of the cylinders, number and type of turbochargers) are RT-flex50-D engines. available on request.
View to driving end
Fuel side
Exhaust side
Remarks: Piping on the engine:
Standard execution – The pipe connections on the engine are supplied
Optional execution (if required) with mating flanges blind, with exception of the turbocharger exhaust gas outlet, blind flanges to be drilled to match pipe diameter supplied by the shipyard.
– Screwed connections are supplied complete.
430.692 – ISO drawing
Fig. F45 Pipe connection plan for Wärtsilä 6RT-flex50-D with ABB A175-L (TC exh. side)
Wärtsilä Switzerland Ltd F–81 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
F. Ancillary systems
View to free end
Exhaust side Fuel side
Remarks: Piping on the engine:
Standard execution – The pipe connections on the engine are supplied
Optional execution (if required) with mating flanges blind, with exception of the turbocharger exhaust gas outlet, blind flanges to be drilled to match pipe diameter supplied by the shipyard.
430.692 – ISO drawing – Screwed connections are supplied complete.
Fig. F46 Pipe connection plan for Wärtsilä 6RT-flex50-D with ABB A175-L (TC exh. side)
26.14.40 – Issue XII.10 – Rev. 0 F–82 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
F. Ancillary systems
View to exhaust side
View to fuel side
Remarks:
Standard execution
Optional execution (if required)
Piping on the engine:
–
The pipe connections on the engine are supplied
with mating flanges blind, with exception of the
turbocharger exhaust gas outlet, blind flanges to
be drilled to match pipe diameter supplied by the
shipyard.
–
Screwed connections are supplied complete.
430.692 – ISO drawing
Fig. F47 Pipe connection plan for Wärtsilä 6RT-flex50-D with ABB A175-L (TC exh. side)
Wärtsilä Switzerland Ltd F–83 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
F. Ancillary systems
drawn for standard execution
396.289d – ISO drawing
Fig. F48 Pipe connection details for Wärtsilä 6RT-flex50-D with ABB A175-L (TC exh. side)
26.14.40 – Issue XII.10 – Rev. 0 F–84 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
F. Ancillary systems
see
fig. F47
see
fig. F47
drawn for standard execution
396.289d – ISO drawing
Fig. F49 Pipe connection details for Wärtsilä 6RT-flex50-D with ABB A175-L (TC exh. side)
Wärtsilä Switzerland Ltd F–85 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
drawn for optional execution
396.290a – ISO drawing
Fig. F50 Pipe connection plan for Wärtsilä 6RT-flex50-D with ABB A175-L (TC exh. side)
26.14.40 – Issue XII.10 – Rev. 0 F–86 Wärtsilä Switzerland Ltd
Marine Installation Manual
F. Ancillary systems
RT-flex50-D
F5.2 RT-flex50-D TC aft end
Drawings available on request
Fig. F51 Pipe connection plan for Wärtsilä 5RT-flex50-D with ABB A170-L (TC aft end)
Wärtsilä Switzerland Ltd F–87 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
F. Ancillary systems
26.14.40 – Issue XII.10 – Rev. 0 F–88 Wärtsilä Switzerland Ltd
Marine Installation Manual
RT-flex50-D
G. Automation and controls
G1 Introduction
Developments in Engine Automation and Controls at Wärtsilä Switzerland Ltd are focussed on the latest trends in ship automation that tends to always higher integration levels.
The standard electrical interface, designated DENIS-9520 (Diesel Engine CoNtrol and optImizing Specification), assures a perfect match with approved remote control systems, while the WECS-9520 (Wärtsilä Engine Control System) takes care of all RT-flex specific control functions. Computer based tools under the designation of the product family MAPEX (Monitoring and mAintenance Performance Enhancement with eXpert knowledge) enable ship-owners and operators to improve the operating economy of their diesel engines.
All those systems provide data bus connection to the ship automation to make specific data available wherever required and facilitate installation.
Complete ship automation systems provided by one of the leading suppliers approved by Wärtsilä Switzerland offer the degree of integration demanded in modern shipbuilding while being perfectly adapted to the engine’s requirements.
Applying a single supplier strategy for the entire ship automation shows many other advantages in terms of full responsibility, ease in operation and maintenance.
DENIS
Family MAPEX Engine Fitness Family DENIS-1 DENIS-5 DENIS-6 DENIS-9520 RT-flex WECS-9520 MAPEX-PR Remote Control Alarm System Safety System Optimizing Functions Engine Control Engine Fitness Systems Engine Operation Support Spares & Maintenance Management Support & Tools Operation Manual Service Bulletin Code Book Maintenance Video Engine Parts Dataset CBM Service Agreement
F10.4893
Fig. G1 EMA concept comprising DENIS, WECS and MAPEX modules
Wärtsilä Switzerland Ltd G–1 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual G. Automation and controls RT-flex50-D
RT-flex automation layout
F10.5322 RT-flex diesel engine D E N I S - 9 5 2 0 E n g i n e S p e c i f i c a t i o n Alarm sensors E110, E120, E130 Alarm terminal boxes E10, E15, E20, E28 Control terminal boxes Sensors and actuators E25 Local control panel Local indications E90 WECS shipyard interface box WECS-9520 WECS sensors and actuators Propulsion Control System DENIS-9520 remote control specification Alarm and Monitoring System Independent subsystems: Alarms Alarm and slow-down signals 2 x AMS Bus Modbus 2 x PCS Bus CANopen or Modbus CANopen to LCP Remote controlsystemSafety systemTelegraph system Electronic speedcontrol systemECR ManualControl panelConnector forservice access Signals for controlSignals for safetySignals for alarm/indication WECS alarm signals CANopen for service access CANopen to ECR manual control Command orders from RCS/spd ctrl.Feedback signals from WECS Electric motor Starter units Signals for alarm Alarm signals Slow-downs IndicationsSignals for alarm and slow-down
Fig. G2 RT-flex automation layout
26.14.40 – Issue XII.10 – Rev. 0 G–2 Wärtsilä Switzerland Ltd
Marine Installation Manual
G. Automation and controls
RT-flex50-D
G1.1 DENIS
The DENIS family contains specifications for the engine management systems of all modern types of Wärtsilä two-stroke marine diesel engines. The diesel engine interface specification applicable for all current types of RT-flex engines is DENIS-9520.
G1.2 WECS
Under the designation of WECS-9520 Wärtsilä Switzerland provides a computerised control system for all RT-flex functions. As such it is a component of the RT-flex system and includes all necessary interfaces to the engine as well as to the remote control and electronic speed control system.
With the same well proven engine control functions like the previous WECS-9500 it enhances the integration into the ship management system by providing data bus communication to all external systems.
G1.3 MAPEX
The products of the MAPEX family are designed to improve the engine’s efficiency through better management and planning and save money by making available the knowledge of our engine management specialists.
For the further description of the MAPEX products please refer to section G4.
G2 DENIS-9520
G2.1 General
The concept of DENIS-9520 meets the requirements of increased flexibility and higher integration in modern ship automation and provides the following advantages for ship-owners, shipyards and engine builders:
• Clear interface definition The well defined and documented interface results in a clear separation of the responsibilities between engine builder and automation supplier. It allows that authorised suppliers adapt their systems to Wärtsilä RT-flex engines with reduced engineering effort. The clear signal exchange simplifies troubleshooting.
• Approved propulsion control systems Propulsion control systems including remote control, speed control, safety and telegraph systems are available from suppliers approved by Wärtsilä Switzerland Ltd. This cooperation ensures that these systems fully comply with the specifications of the engine designer.
• Easy integration in ship management system Providing data bus communication between WECS, the propulsion control and the vessel’s alarm and monitoring system facilitates an easy integration of the various systems. The existing man–machine interface (MMI) of the vessel’s automation can therefore handle also the additional MMI functions attributed to the WECS.
• Ship automation from one supplier – Integrated solution Automation suppliers approved by Wärtsilä Switzerland Ltd can handle all ship board automation tasks. Complete automation systems from one supplier show advantages like easier engineering, standardisation, easier operation, less training, fewer spare parts, etc.
Wärtsilä Switzerland Ltd G–3 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
G. Automation and controls
The WECS-9520 is well suited to support this integrated automation concept by providing redundant data bus lines that deliver all necessary information for propulsion control, alarm / monitoring system and man–machine interface. The MMI of the WECS-9520 can provide additional features when using such an integrated solution.
• Ship automation from different suppliers – Split solution In the case that propulsion control and alarm / monitoring systems are from different suppliers the WECS-9520 supports also such a split solution by providing two separate redundant data bus lines one each for propulsion control and alarm / monitoring system. MMI functions are then also split within propulsion control and alarm / monitoring system.
DENIS-9520 describes the signal interface between the RT-flex engine including its flex engine control system (WECS) and the ship automation.
The DENIS specification does not include any hardware. It summarises all the data exchanged and defines the control functions required by the engine.
The DENIS specification is presented in two sets of documents:
• DENIS engine specification This file contains the specification of the signal interface on the engine and is made accessible to engine builders and shipyards. It consists basically of the control diagram of the engine, the signal list including a minimum of functional requirements and gives all information related to the electrical wiring on the engine. It lists also the necessary alarm and display functions to be realised in the vessel’s alarm and monitoring system. The DENIS-9520 engine specification covers the engine-built components for control, alarm and indication. With the replacement of previous camshaft-controlled function by the WECS-9520, the engine built control components are reduced to a minimum. Instrumentation is based on the conventional RTA engine with RT-flex-specific components added.
• DENIS remote control specification
This file contains the detailed functional specification of the remote control system. The intellectual property on this remote control specification remains with Wärtsilä Switzerland Ltd. Therefore this file is licensed to remote control partners of Wärtsilä Switzerland Ltd, only. These companies offer systems, built completely according to the engine designer’s specifications, tested and approved by Wärtsilä Switzerland Ltd.
G2.2 Propulsion control system
The propulsion control system is divided into the following sub-systems:
•
Remote control system.
•
Safety system.
•
Electronic speed control system.
•
Telegraph system.
Safety system and telegraph system work independently and are fully operative even with the remote control system out of order.
26.14.40 – Issue XII.10 – Rev. 0 G–4 Wärtsilä Switzerland Ltd
Marine Installation Manual
RT-flex50-D G. Automation and controls
G2.2.1 Approved propulsion control systems
Wärtsilä Switzerland Ltd has an agreement con-engines with each of the following leading marine cerning the development, production, sales and automation suppliers. All approved propulsion servicing of remote control, electronic speed con-control systems listed below contain the same trol and safety systems for their Wärtsilä RT-flex functionality specified by Wärtsilä.
Supplier / Company
Remote Control System
Electronic Speed Control System
Kongsberg Marine Kongsberg Maritime AS P.O. Box 1009 km.sales@kongsberg.com N-3194 Horten Tel. +47 81 57 37 00 Norway Fax +47 850 28 028
AutoChief C20
DGS C20
NABTESCO Corporation NABTESCO corp., Marine Control Systems Company 1617-1, Fukuyoshi-dai 1-chome Nishi-ku Kobe, 651-22413 Tel. +81 78 967 5361 Japan Fax +81 78 967 5362
M-800-III
MG-800 FLEX
SAM Electronics GmbH / Lyngsø Marine SAM Electronics GmbH Behringstrasse 120 D-22763 Hamburg Tel. +49-40 88 25 0 Germany Fax +49-40 88 25 4116 Lyngsø Marine AS 2, Lyngsø Allé DK-2970 Hørsholm Tel. +45 45 16 62 00 Denmark Fax +45 45 16 62 62
DMS2100i
EGS2000RTf
Table G1 Suppliers of remote control systems and electronic speed control systrems
Modern remote control systems consist of electronic modules and operator panels for display and order input for engine control room and bridge. The different items normally communicate via serial bus connections. The engine signals described in the DENIS-9520 specification are usually connected via the terminal boxes on the engine to the electronic modules placed in the engine control room.
These electronic modules are in most cases built to be located either inside the ECR console or in a separate cabinet to be located in the ECR. The operator panels are to be inserted in the ECR console’s surface.
Kongsberg Maritime has designed the electronic modules of the AutoChief C20 propulsion control system in a way that they can be mounted directly on the main engine. In this case the electronic modules for remote control, safety and speed control system are located in the same boxes used as terminal boxes for any other propulsion control system.
This facilitates to commission and test the complete propulsion control system already at the engine maker’s testbed. The wiring at the shipyard is then limited to a few power cables and bus communication wires whereas the conventional arrangement requires more cables between the terminal boxes on the engine and the electronic modules of the remote control system in the engine control room.
These boxes with the electronic modules are part of the propulsion control system scope of supply and shall be delivered to the engine builder for mounting on the engine.
Wärtsilä Switzerland Ltd G–5 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
G. Automation and controls
Remote control system
Bridge wing (option)
Bridge
Bridge wing (option)
Control
Remote control, Safety
room
and Electronic speed control
Ship alarm
system
Engine
room
WECS-9520
Local
flex engine control system
panel
RT-flex engine
F10.5065
Fig. G3 DENIS-9520 remote control system layout
26.14.40 – Issue XII.10 – Rev. 0 G–6 Wärtsilä Switzerland Ltd
Marine Installation Manual
G. Automation and controls
RT-flex50-D
G2.2.2 Functions of the propulsion control system
Approved propulsion control systems comprise the following independent sub-systems:
Remote control system
Main functions:
•
Start, stop, reversing.
•
Cylinder pre-/post-lubrication.
•
Automatic slow turning.
•
Auxiliary blower control.
•
Control transfer.
•
Speed setting.
•
Automatic speed programme.
•
Load-dependent cylinder lubrication (Pulse Lubricating System).
Indications:
The remote control system is delivered with control
panels for local, control room and bridge control,
including all necessary order input elements and
indications e.g. push buttons/switches and indication lamps or alternatively a respective display.
The following instruments for remote indication in the control room are specified in the DENIS-9520 standard as a minimum:
•
Starting air pressure.
•
Engine speed.
•
Revolution counter.
•
Running hour counter.
•
Load indicator.
•
Turbocharger speed.
•
Scavenge air pressure in air receiver.
The following instruments for remote indication on the bridge are specified in the DENIS-9520 standard as a minimum:
•
Starting air pressure.
•
Engine speed.
In addition to those indications, common for RTA and RT-flex engines, the remote control system applied to the RT-flex engine includes display of the most important values of the flex engine control system (WECS) like fuel pressure, servo oil pressure etc.
Electronic speed control system
•
Keeps engine speed at the set point given by the remote control system.
•
Sends fuel command to the WECS-9520.
•
Limits fuel amount in function of charge air and measured speed for proper engine protection.
Wärtsilä Switzerland has always requested that remote control systems and speed control systems of the same supplier are applied, in order to avoid compatibility problems and increased engineering efforts.
Traditionally the electronic speed control system was considered as a part of the main engine and was therefore usually delivered together with the engine.
With the introduction of WECS-9520 and DENIS-9520, the electronic speed control system is assigned to the propulsion control system and therefore shall be delivered together with the corresponding remote control system and further components of the propulsion control package by the party responsible for the complete propulsion control system, i.e. in most cases the shipyard.
The details regarding system layout, mechanical dimensions of components as well as the information regarding electrical connections has to be taken from the technical documentation of the respective supplier.
Safety system
Main functions:
•
Emergency stop functions.
•
Overspeed protection.
•
Automatic shut-down functions.
•
Automatic slow-down functions.
Telegraph system
• Order communication between different control locations.
ECR manual control panel
A manual control panel delivered together with the propulsion control system and fitted in the ECR console allows to operate the engine manually and
Wärtsilä Switzerland Ltd G–7 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
G. Automation and controls
independently from the remote control system. The functions of the ECR manual control are equal to the control function on the local control panel at the engine side.
Local manual control
Local manual control of the engine is performed from a control panel located on the engine. This panel includes elements for manual order input and indication for safety system, telegraph system and WECS-9520.
The local control box with the local manual control panel is included in the package delivered by approved remote control system suppliers.
Options
•
Bridge wing control.
•
Order recorder.
G2.2.3 Recommended manoeuvring characteristics
F10.1972 Recommended values for the manoeuvring positions are given in figure G4.
Fig. G4 Recommended manoeuvring characteristics
26.14.40 – Issue XII.10 – Rev. 0 G–8 Wärtsilä Switzerland Ltd
Marine Installation Manual
G. Automation and controls
RT-flex50-D
G2.3 Interface to alarm and monitoring systems
G2.3.1 General layout – Operator interface OPI
On a conventional RTA engine, hardwired signals from alarm sensors mounted to the engine had to be connected to the vessel’s alarm and monitoring system. On a RT-flex engine, basically the same alarm sensors are available. Additional sensors with hard-wired connection are fitted to monitor RT-flex specific circuits of the engine. In addition to that, the flex engine control system (WECS) provides alarm values and analogue indications via data bus connection to the ship’s alarm and monitoring system as part of the operator interface of the RT-flex engine. Connection from the WECS-9520 to the engine automation can be made in two ways (refer to figure G5).
Integrated solution
Propulsion control system and alarm / monitoring system from same supplier: This allows to connect both propulsion control system and alarm / monitoring system through one redundant bus line only (CANopen or Modbus, depending on automation maker) to the WECS-9520.
With this integrated solution an extended presentation of relevant parameters is possible as well as a comfortable access to changeable user parameters taking full profit of the graphical user interface functions available in the alarm and monitoring system.
A further step in integration is possible when using a DataChief C20 alarm and monitoring system of Kongsberg Maritime. In this case also all the conventional sensors and the additional flex sensors can be connected via data bus lines. The design allows that the data acquisition units are mounted directly on the engine in the same boxes used as terminal boxes for any other alarm and monitoring system. These boxes which are part of the alarm and monitoring system usually provided by the shipyard have to be delivered to the engine builder for mounting to the engine and connection of the sensors. Commissioning and testing of the complete set of alarm signals already at the engine maker’s testbed is thus facilitated and the wiring at the shipyard is limited to a few power cables and bus communication.
Split solution
Propulsion control system and alarm / monitoring system from different suppliers: The propulsion control system is connected through one redundant bus line (CANopen or Mod-bus, depending on automation maker) to the WECS. For the separate alarm and monitoring system an additional redundant Modbus connection is available. Also the operator interface is then split in this case:
•
Changing of parameters accessible to the operator and display of parameters relevant for the engine operation is included in the remote control system.
•
The alarm / monitoring system has to include:
–
Display of some flex system indications, like e.g. fuel pressure, servo oil pressure etc.
–
Display of the flex system alarms provided by the WECS.
•
WCH provides modbus lists specifying the display values and alarm conditions as part of the DENIS engine specification.
Requirements for any alarm and monitoring system to be applied in a split solution:
•
Possibility to read values from a redundant Modbus line according to standard Modbus RTU protocol.
•
Ability to display analogue flex system values (typically 20 values) and add alarm values provided from WECS to the standard alarm list (100–200 alarms depending on engine type and number of cylinders).
Wärtsilä Switzerland Ltd G–9 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
G. Automation and controls
Integrated solution
Propulsion Control and Alarm and Monitoring System from same suppliers
Alarm
and Monitoring System Propulsion Control System Sensors and actuators for control WECS-9520 Flex sensors for alarm Standard sensors for alarm E120 E130 E90 E25 E20 E10 E110 2 x CANopen or Modbus
Integrated solution
Propulsion Control and Alarm and Monitoring System from Kongsberg
Alarm
and Monitoring System Propulsion Control System Sensors and actuators for control 2 x CANopen 2 x CANopen WECS-9520 Flex sensors for alarm Standard sensors for alarm E120.2 E120.1 E110 E130 E90 E25 E20 E10
Split solution
Propulsion Control and Alarm and Monitoring System from different suppliers
F10.5323
Alarm and Monitoring System Propulsion Control System Sensors and actuators for control 2 x Modbus WECS-9520 Flex sensors for alarm Standard sensors for alarm E120 E130 E90 E25 E20 E10 E110 2 x CANopen or Modbus
Fig. G5 Integrated/split solution
26.14.40 – Issue XII.10 – Rev. 0 G–10 Wärtsilä Switzerland Ltd
Marine Installation Manual
G. Automation and controls
RT-flex50-D
G2.3.2 Alarm sensors and safety functions
The classification societies require different alarm and safety functions, depending on the class of the vessel and its degree of automation. These requirements are listed together with a set of sensors defined by Wärtsilä Switzerland Ltd in tables G2 to G4 “Alarm and safety functions of Wärtsilä RT-flex50-D marine diesel engines”.
The time delays for the slow-down and shut-down functions given in tables G2 to G4 are maximum values. They may be reduced at any time according to operational requirements. When decreasing the values for the slow-down delay times, the delay times for the respective shut-down functions are to be adjusted accordingly. The delay values are not to be increased without written consent of Wärtsilä Switzerland Ltd.
Included in the standard scope of supply are the minimum of safety sensors as required by WCH for attended machinery space (AMS). If the option of unattended machinery space (UMS) has been selected the respective sensors have to be added according to the requirements issued by Wärtsilä Switzerland Ltd. There are also some additional sensors defined for the monitoring of flex system specific engine circuits.
The exact extent of delivery of alarm and safety sensors has to cover the requirements of the respective classification society, Wärtsilä Switzerland Ltd, the shipyard and the owner.
The sensors delivered with the engine are basically connected to terminal boxes mounted on the engine. Signal processing has to be performed in a separate alarm and monitoring system usually provided by the shipyard.
Wärtsilä Switzerland Ltd G–11 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
G. Automation and controls
60 Alarm and safety functions for RT-flex-50-D engines Values min. WCH requirements IACSABSBVCCSDNVGLKRLRMRSNKPRSRINA Medium Location Signal No. Pressure Engine inlet PT1101A ALM L 2.0 bar 0Cylinder cooling water SLD L 1.8 bar 60 PS1101S SHD L 1.5 bar 60 Temp. Engine inlet TE1111A ALM L 65 °C 0 Outlet each cylinder TE1121–28A ALM H 90 °C 0 SLD H 95 °C 60 Main bearing oil Pressure Supply PT2001A ALM L 5.0 bar 0 SLD L 4.8 bar 60 PS2002S SHD L 4.3 bar 10 Temp. Supply TE2011A ALM H 50 °C 0 SLD H 6055 °C Servo oil Flow FS2061–62A ALM L no flow 0 Thrust bearing oil ALM H 065 °C SLD H 6070 °C SHD H 6085 °CTS2121S Crank bearing oil Temp. ALM H 0 Temp. Outlet TE2201–08A 65 °C Oil mist concentration Crankcase ALM H 0–AS2401A Failure Detection unit ALM F 0–XS2411A LevelSettingFunctionfor AMS max. allowabletime delay [sec.] A A A A A A A A A A A B B B B B B B B B B BB B B B B B B B B B B Pump inlet Oil leakage monitoring Level LS2055A ALM H max. 0Supply unit Concentration Physical unitadd. to AMS for UMSadd. flex signals Scavenge air cooling water fresh water, single-stage Pressure Inlet cooler Outlet cooler PT1361A ALM L 2.0 bar 0 ALM L 0 TE1381–82A ALM H 80 °C Outlet SLD H –AS2401S Failure ALM F – 0Automat. filter XS2053A TE2121A Crosshead bearing oil Temp. Outlet ALM H 065 °C A A A A A A A A A A ATE2301–08A 0 25 °CTE1371A Temp. Inlet cooler Outlet TE2102–10A SLD H 6070 °C A ALM H 065 °C A A A A A A A A A A A SLD H 6070 °C A SLD H 6070 °C A SLD H 6070 °C A ALM H 065 °C A A A A A A A A A A ATE2101A PT2041A ALM ALM L PT2046A ALM 40 bar 3 H H 70 bar 10 bar 0 3 Pressure Free end Free endLeakage for pulse lubricating system only = Additional request to UMS for AMS = Request for AMS only Request of classification societies for UMS Piston cooling oil Temp. Outlet each cylinder ALM H 080 °CTE2501–08A SLD H 6085 °C Outlet each cylinder SLD D 30 5 °C Flow ALM D 0 3 °C 2)
Table G2 Alarm and safety functions of Wärtsilä RT-flex50-D marine diesel engines
26.14.40 – Issue XII.10 – Rev. 0 G–12 Wärtsilä Switzerland Ltd
Marine Installation Manual
G. Automation and controls
RT-flex50-D max. allowabletime delay [sec.] Alarm and safety functions for RT-flex50-D engines Values min. WCH requirements IACSABSBVCCSDNVGLKRLRMRSNKPRSRINA Medium Location Signal No. Pressure Inlet TC PT2611–12A ALM L 1.0 bar 5Turbocharger bearing oil SLD L 0.8 bar 60 PS2611–12S SHD L 0.6 bar 5 Pressure Inlet TC ALM L 5 SLD L 60 SHD L 5 Temp. Outlet TC TE2601–02A ALM H 0 SLD H 60 Temp. Inlet TC ABB A100-L TE2621A ALM H 0 SLD H 60 Pressure Casing inlet PT2711A ALM L 1.0 bar 0 Pressure PT2721A ALM L 60 ALM L 60 ABB A100-L Cylinder lubricating oil Cylinder inlet FE3101–08A ALM L no flow 30 SLD L 60 PS3121A ALM H 0.5 bar 0 ALM H 17 cST 0 ALM L 13 cST 0 ALM H 0 Pressure PT3421A ALM L 7 bar 0 ALM L 20–130°C 0 max. Exhaust gas Temp. After each cylinder TT3701–08A ALM H 0 ALM D 50 °C 0 SLD H 60 SLD D 60 ALM H 0515 °CTT3721–22A SLD H 60530 °C ALM H 0480 °CTT3731–32A SLD H 60500 °C LevelSettingFunctionfor AMS H G D D D D D D D D D D D MHI MET MB PT2611–12A 0.7 bar 0.6 bar PS2611–12S 0.4 bar 85 °C 90 °C additional requirement when separate TC oil supply Geislinger damper oil Axial damper (detuner) oil 1.7 bar 1.7 barPT2722A aft side fore side Damp. chamber no flow Diff.press Fuel oil Viscosity LS3426ALevelLeakage Temp. TE3411A C C D After turbocharger Before turbocharger 515 °C 530 °C 70 °C E E F F G H Supply unit Physical unit Before supply unit Temp. Outlet TC TE2601–02A ALM H SLD H 0 60 5) ALM H 0max.LS3446A ALM H 0max.LS3444A add. to AMS for UMSadd. flex signals 6) Rail unit ICU/Fuel pipe FS3100S Inlet TC MHI MET MB ALMSLDTE2621A ALM SLD H H 60 °C 65 °C 0 60 Flow Cylinder inlet FS3101–08A ALM SLD L L no flow no flow 30 60 Flow 1) ALM H 50–160°C 0 C C C C C C C C C CC Before supply unit LS3125A ALM L min. –Level Cyl.lub.oil pump Oil filterfor pulse lub. syst. only for conventional lubricating system only 85 °C 90 °C 120 °C 110 °C = Additional request to UMS for AMS = Request for AMS only Request of classification societies for UMS Pressure Inlet TC PT2611–12A ALM L 1.3 bar 5 SLD L 1.1 bar 60 PS2611–12S SHD L 0.9 bar 5 ABB A100-L Temp. Outlet TC TE2601–02A ALM H SLD H 0 60 5) 140 °C 130 °C ME bearing oil supply ME bearing oil supply Separate TC oil supply
Table G3 Alarm and safety functions of Wärtsilä RT-flex50-D marine diesel engines
Wärtsilä Switzerland Ltd G–13 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
G. Automation and controls
– add. flex signals max. allowabletime delay [sec.]Level SHD H 110 % 0Engine Speed Crankshaft Pulse lubricating system ST5111–12S Overspeed XS5056A ALM F ––Pwr. fail Pwr. sup. box Alarm and safety functions for RT-flex50-D engines Values min. WCH requirements IACSABSBVCCSDNVGLKRLRMRSNKPRSRINA Medium Location Signal No. Pressure Distributor PT4341A ALM H 0Air spring air ALM L 5.5 bar 0 PS4341S SHD L 4.5 bar 0 H ALM L 0 0 Engine inlet PT4401A ALM L 0 ALM 7.5 bar SettingFunctionfor AMS 6.0 bar LS4351A Exh.valve air 5.0 bar Control air LevelLeakage oil max. Pressure PT4421A SLD L 5.0 bar 60 Physical unit Pressure ALM L 0PT4301C Starting air Engine inlet 12.0 bar add. to AMSfor UMS Scavenge air Temp. After each cooler 4) ALM L 025 °CTE4031–32A ALM H 0 SLD H 60 Temp. ALM H 0TE4081–88A Each piston underside SLD H 60120 °C ALM H 0max. I I I I I K K K K K 60 °C 70 °C 80 °C LevelCondensation water Air receiver LS4071–72A 3) SLD H max. 60 LS4075–76A ALM H max. 0 Supply Engine inletPressure Bef. water sep. K K Turbocharger Overspeed Speed TC casing ST5201–02A ALM H 7) XS5058A ALM F ––Pwr. fail Pwr. sup. box WECS-9520 control system Request of classification societies: Request for UMS Recommendation for UMS Additional request to UMS for AMS Request for AMS only UMS Unattended machinery space AMS Attended machinery space SLD H max. 60 = Additional request to UMS for AMS = Request for AMS only Request of classification societies for UMS
Classification societies:
IACS
International Association
of Classification Societies
ABS
American Bureau of Shipping
BV
Bureau Veritas
CCS
Chinese Classification Society
DNV
Det Norske Veritas
GL
Germanischer Lloyd
KR
Korean Register
LR
Lloyd’s Register
MRS
Maritime Register of Shipping (Russia)
NK
Nippon Kaiji Kyokai
PRS
Polski Rejestr Statkow
RINA
Registro Italiano Navale
Signals for two-stage scavenge air cooling, Geislinger damper, PTO coupling, electric speed control and turbocharger vibration apply only if respective equipment is used.
Function: Level:
ALM: alarm D: deviation SLD: slow down F: failure SHD: shut down H: high
L: low
343.922j
Remarks:
1) Signals FE3101–08A and LS3125A for cylinder lubrication type VOGEL,
signals FS3101–08A and FS3100S for cylinder lubrication type JENSEN.
2) Deviation from average: Acts as flow monitoring.
3) Alternatively, low temperature alarm or condensation water high level alarm.
4) For water separators made from plastic material the sensor must be placed right after the separator.
5) The indicated alarm and slow-down values are minimum settings allowed by the TC maker. In order to achieve an earlier warning, the ALM and SLD values may be increased up to 0.4 bar below the minimum effective pressure measured within the entire engine operation range. The final ALM/SLD setting shall be
determined during commissioning / sea trial of the vessel.
6) ALM value depending on fuel viscosity.
7) ALM value depending on turbocharger type.
(Optional SLD on customers request.)
A or B are requested alternatively
C or D are requested alternatively
E or F are requested alternatively
G or H are requested alternatively
I or K are requested alternatively
Table G4 Alarm and safety functions of Wärtsilä RT-flex50-D marine diesel engines
26.14.40 – Issue XII.10 – Rev. 0 G–14 Wärtsilä Switzerland Ltd
Marine Installation Manual
G. Automation and controls
RT-flex50-D
G3 WECS-9520 – RT-flex engine control system
G3.1 WECS-9520 – System layout
WECS-9520 covers RT-flex functions related to the engine as a whole (e.g. common rail pressure control, servo oil pressure control) as well as the cylinder specific RT-flex functions (e.g. control of volumetric injection, exhaust valve and start valves).
The WECS-9520 consists of the following components:
•
1 control box E95.n per cylinder, including one FCM-20 each, performing cylinder control and common control functions.
•
1 shipyard interface box (SIB) E90 providing all external connections. E90 includes one FCM-20 “online spare module”.
•
1 Power supply box E85.
The control boxes E95.n and the shipyard interface box E90 are incorporated in the rail unit. The power supply box E85 is supplied loose for mounting in the engine room.
G3.2 WECS-9520 – External 230 VAC power supply
The external 230 VAC power supply for WECS-9520 according to the engine designer’s standard must include two fully redundant 230 VAC power supplies. One 230 VAC power supply line #1 must be fed from the main switch board and one 230 VAC power supply line #2 must be fed from the emergency switchboard. Alternative arrangements of the WECS-9520 power supply are within the responsibility of the shipyard. In this case the redundancy level of the external power supply shall be in line with the redundant power supply concept of WECS-9520. For power consumption see table C4.
G3.3 Online spare module
With WECS-9520 WCH introduces an unique feature for automatic loading application software and parameter settings when replacing a flex control module (FCM-20). This includes the mounting of a so called “online spare module” in the shipyard interface box E90.
With the automatic software loading procedure built into the WECS-9520 it is possible to replace any FCM-20 by any spare module available on board without prior downloading of any data.
When installing an new FCM-20 into a WECS-9520 it will be automatically detected as a new module and receive all necessary application data from the other modules of the WECS-9520.
As the download of the respective data may take some time WCH has found an ultimate arrangement to provide immediate functioning of an FCM-20 after replacement: The online spare module FCM-20. An additional FCM-20 numbered #00 is always fitted in the shipyard interface box E90 ready to be used as spare with all application data already loaded. In case that a FCM-20 needs to be replaced this FCM20 #00 spare is taken as spare and allows full functionality immediately after replacement. An additional FCM-20 from the stock is then to be placed in the E90 as new online spare module. This module will download all necessary data from the other modules within a certain time without compromising engine operation.
G3.4 Communication to external systems
With WECS-9520, direct hard wired connection to external systems is limited to a minimum.
WECS-9520 provides data bus connections to propulsion control system and ship alarm / monitoring system. It also provides data bus connection to the local manual control panel on the engine and to the ECR manual control panel of the RT-flex engine.
Wärtsilä Switzerland Ltd G–15 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
G. Automation and controls
With the WECS-9520 the man–machine interface (MMI) also referred to as operator interface (OPI) of the main engine and the WECS-9520 engine control system is integrated in the ship automation in either the integrated or split solution an described in section G2.3.1.
In the standard configuration the WECS-9520 provides the following external connections:
•
2 redundant CANopen lines intended for the connection of the remote control system.
•
2 redundant Modbus lines as an alternative connection of the remote control system.
•
2 redundant Modbus connections for the ship’s alarm and monitoring system in the split solution.
•
1 CANopen line for connection of the local manual control panel.
•
1 CANopen line for connection of the ECR manual control panel.
•
1 CAN bus connection to a plug on the back-up panel of the remote control system foreseen for the connection of a notebook of a service engineer.
The use of the bus connection on the WECS-9520 with the different approved system makers is as follows:
Kongsberg Maritime
• Integrated solution
Propulsion control system AutoChief C20 and alarm / monitoring system DataChief C20: Connection of two CANopen lines only. The propulsion control system with remote control, safety system and electronic speed control system is connected directly to the CANopen lines while the data to the alarm and monitoring system is routed through CAN couplers from the same two CANopen lines.
• Split solution
Propulsion control system AutoChief C20 with an alarm and monitoring system of any other maker: The propulsion control system with remote control, safety system and electronic speed control system is connected to the two redundant CANopen lines. The alarm and monitoring system is to be connected to the additionally provided two redundant Modbus lines.
SAM Electronic / Lyngsø Marine
• Integrated solution Propulsion control system DMS2100i and alarm / monitoring system UMS2100: Connection of two Modbus lines only. The propulsion control system with remote control, safety system and electronic speed control system is connected directly to the Modbus lines while the data to the alarm and monitoring system is routed through the propulsion control system.
• Split solution Propulsion control system DMS2100i with an alarm and monitoring system of any other maker: The propulsion control system with remote control, safety system and electronic speed control system is connected to the two redundant Modbus lines provided for remote control. The alarm and monitoring system is to be connected to the additionally provided two redundant Modbus lines.
Nabtesco
• Split solution Nabtesco propulsion control system M-800-III with an alarm and monitoring system of any other maker: The propulsion control system with remote control, safety system and electronic speed control system is connected to the two redundant CANopen lines provided for remote control. The alarm and monitoring system is to be connected to the additionally provided two redundant Modbus lines.
26.14.40 – Issue XII.10 – Rev. 0 G–16 Wärtsilä Switzerland Ltd
Marine Installation Manual
G. Automation and controls
RT-flex50-D
G3.5 Cabling notes
The Remote Control System (RCS) and Alarm & Monitoring System (AMS) supplier is to provide a detailed wiring diagram for a specific plant showing the actual cabling, cable routing and intermediate terminals.
Screened cables are to be used where indicated in the cable lists and wiring diagrams.
Wärtsilä Switzerland Ltd recommends that cables carrying different current levels are routed separately through two cable ducts being at least 0.5 m apart and identified as follows:
•
High level signals (denoted as H in wiring diagrams): Signals with considerable current level, e.g. solenoid valves and power supplies.
•
Low level signals (denoted as L in wiring diagrams): Signals with minimal current level, e.g. switches, analogue signals, temperature signals.
Data signal cables
For the data bus cables connecting the PCS to the WECS it is mandatory to use cables that fulfil the following specifications:
•
Screened twisted pair with 0.5 mm2 to 1 mm2 cable core section.
•
Specific impedance of 120 Ω (15 %).
Note: Standard Cat5 cables usually do not fulfil these requirements
Wiring principles
•
Switches: Generally 2 cores per switch are required but in some cases a common supply may be used.
•
PT 100 Sensors: The engine wiring should be done as 3 core cabling. The shipyard wiring can be done as 3 or 4 connection. The use of at least 3 core cabling is recommended.
•
Thermocouples: Thermocouples are connected to the engine mounted terminal boxes by 2 core compensating cables, where they are connected to a converter that supplies a 4–20 mA signal. For the shipyard connections, compensating cables or reference temperature measurement in the terminal box are to be applied. It is madatory that screened cables are used in all cases between engine mounted terminal boxes and the AMS.
Wärtsilä Switzerland Ltd G–17 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual G. Automation and controls RT-flex50-D
G4 MAPEX Engine Fitness Family
An intelligent engine management system also needs to include functions such as the monitoring of specific engine parameters, analysing data, and managing maintenance and spare parts purchasing activities. Many of these functions involve specific and complex engine knowledge and are most appropriately handled directly by the engine designer.
Wärtsilä Switzerland Ltd provides a full range of equipment for carrying out these functions, called the MAPEX Engine Fitness Family. MAPEX, or ‘Monitoring and mAintenance Performance Enhancement with eXpert knowledge’, encompasses the following principles:
•
Improved engine performance through reduced down time.
•
Monitoring of critical engine data, and intelligent analysis of that data.
•
Advanced planning of maintenance work.
•
Management support for spare parts and for maintenance.
•
Access on board ship to the knowledge of experts.
•
Reduced costs and improved efficiency.
The MAPEX Engine Fitness Family currently comprises one system: MAPEX-PR.
Further members of the MAPEX Engine Fitness Family are also envisaged.
In each case special emphasis has been placed on user friendliness and ease of installation.
For further information regarding products of the MAPEX Engine Fitness Family contact your WCH sales representative.
26.14.40 – Issue XII.10 – Rev. 0 G–18 Wärtsilä Switzerland Ltd
Marine Installation Manual
G. Automation and controls
RT-flex50-D
G4.1 Mapex-PR (Piston-running Reliability)
MAPEX-PR continuously monitors the piston-running behaviour on large-bore Wärtsilä two-stroke diesel engines with an alarm if adverse conditions should appear. For example, an alarm is signalled if, among other criteria, the local temperature on the liner is abnormally high due to piston-ring scuffing or inadequate ring sealing.
The measured data are stored in an electronic unit and can be viewed on a personal computer. Preferably an industrial-PC installed in an ideally suited control box. All data and charts can be printed and copied to other storage media.
The following data are monitored over fixed periods of 1, 4.5, 24, 400 or variable engine running hours and displayed graphically:
•
Liner wall temperature (two sensor per cylinder).
•
Cylinder cooling water temperature inlet and outlet.
•
Scavenge air temperature after each cooler.
•
Engine speed.
•
Engine load indicator position.
•
Alarms.
The following alarms can be connected to the ship’s alarm system to inform the engineers about any unexpected situation:
•
High friction on one or both side of the cylinder liner.
•
Deviation of temperature on one or both sides of the cylinder.
•
Average temperature of the engine.
•
Cooling water fluctuation.
•
Scavenge air temperature.
•
System alarm for: System failure.
Together with the ”normal” Manual, Wärtsilä Switzerland Ltd delivers also a digital version, which will be installed together with the software MAPEX-MD
Customers benefit of MAPEX-PR
Thanks to the MAPEX-PR alarming system you are able to detect an abnormal behaviour of the piston-running without opening the engine. So you can save your engine from major damage and therefore increase the availability of your vessel’s main propulsion system.
MAPEX-PR is the tool to check the piston-running behaviour.
MAPEX-PR
•
Alarms if the liner wall temperature shows high piston-ring friction.
•
Checks the hot spots of the diesel engine.
•
Is an on-line display for piston-ring and nozzle performance.
•
Is capable to detect malfunctions such as blow by and adhesive wear.
•
Informs if thermal overload should occur on the cylinder liner.
•
Is your round-the-clock watchful eye.
Wärtsilä Switzerland Ltd G–19 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
G. Automation and controls
ENGINE CONTROL ROOM ENGINE ROOM
MAPEX-PR
Control box
PC in Engine control room
MAPEX-PR
Box 300
Remote control
Ships
system
Alarm system
Amplifier
Electronics Sensors & Amplifiers Fig. G6 MAPEX-PR – System overview
Fig. G7 MAPEX-MD – Visualization software
26.14.40 – Issue XII.10 – Rev. 0 G–20 Wärtsilä Switzerland Ltd
Marine Installation Manual
H. General installation aspects
RT-flex50-D
H1 Introduction
The purpose of this chapter is to provide information to assist planning and installation of the engine. It is for guidance only and does not supersede current instructions. If there are details of engine installation not covered by this manual please contact Wärtsilä Switzerland Ltd, Winterthur, directly or our representative.
The entire Chapter H “General installation aspects” is applicable for the following engines:
–
Wärtsilä 5–8RT-flex50-D TC exh. side
–
Wärtsilä 5–7RT-flex50-D TC aft end
Wärtsilä Switzerland Ltd H–1 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
H. General installation aspects
H2 Dimensions and masses H2.1 Engine
L
I A K M N F D B GC E X R Deck beam X = depending on crane height Remark: – Drawn for engines with TC on exhaust side. – See fig. H10 for engines with TC on aft end.
Dmension E does not apply when TC on aft end.
F10.5320
Fig. H1 Engine dimensions
Number of cylinders
5
6
7
8
Dimensions in mm with a toleranceDimensions tolerance of approx. ± 10 mm0.50.6± mm0.50.6
A
5582
6462
7342
8222
B
3150
C
1088
D
7646
E
4400
F
9270
G
1636
I
631
K
355
L
1097
M
880
N
610
R
660
Net engine mass (without oil/water) [tonnes]
200
225
255
280
Minimum crane capacity [tonnes]
2.5
Remarks: F: Min. height to crane hook for vertical removal. For removal with reduced minimum height (tilted piston position), please contact WCH. In any case, vertical piston removal should be preferred. M Cylinder distance. R Housing with crank angle sensor; space for removal included.
Table H1 Engine dimensions and masses
26.14.40 – Issue XII.10 – Rev. 0 H–2 Wärtsilä Switzerland Ltd
and water guide jacket
shoes
and gland box
Marine Installation Manual
RT-flex50-D H. General installation aspects
H2.2 Dimensions and masses of main components
Table H2 contains the net component masses and dimension of the engine, calculated according to nominal dimensions.
Number of cylinders
5
6
7
8
Bedplate including bearing girdersBedplate girders
length
[m]
5.24
6.12
7.0
7.88
mass
[t]
24.86
27.95
31.03
34.11
CrankshaftCrankshaft
length
[m]
5.91
6.54
7.42
8.56
mass
[t]
44.4
51.01
Flywheel min max
mass
[t]
4.2
mass
[t]
8.16
Engine frame, complete (mono block)
length
[m]
5.52
6.39
mass
[t]
19.69
22.51
Tie rod
length
[m]
6.49
mass
[t]
0.44
Cylinder block, complete with studsCylinder studs
length
[m]
4.65
5.53
6.41
7.29
mass
[t]
1.37
1.65
1.93
2.20
Cylinder linerCylinder liner
height
[m]
2.35
mass
[t]
1.94
Cylinder cover with exhaust valveCylinder valve height
[m]
1.45
mass
[t]
1.9
Connecting rod, completeConnecting complete
length
[m]
2.05
mass
[t]
1.14
Crosshead, complete with guideCrosshead, guide height
[m]
0.73
mass
[t]
1.46
Piston, complete with rodPiston, rod length
[m]
2.95
mass
[t]
0.93
Scavenge air receiverScavenge receiver
length
[m]
5.49
6.37
mass
[t]
9.35
Exhaust valve, completeExhaust complete
height
[m]
1.26
mass
[t]
0.525
Rail unitRail unit
length
[m]
5.38
6.26
mass
[t]
2.75
3.12
Supply unitSupply unit
length
[m]
height
[m
mass
[t]
1.02
1.18
1.18
Remark: For engine dimensions and masses see table H1. For turbocharger and scavenge air cooler masses see tables C1 and C2.
Table H2 Dimensions and masses of main components
Wärtsilä Switzerland Ltd H–3 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
H. General installation aspects
H2.3 Thermal expansion at the turbocharger expansion joint
Before expansion pieces, enabling connections between the engine and external engine services, are to be made it is important to take into account the thermal expansion of the engine. The expansions are defined as follows (see also fig. H2):
•
Transverse expansion (X) Distance from crankshaft centerline to the centre of gas outlet flange
•
Vertical expansion (Y) Distance from bottom edge of the bedplate to the centre of gas outlet flange
•
Longitudinal expansion (Z)
Distance from engine bedplate aft edge to the
centre of gas outlet flange with turbochargers on exhaust side.
Fig. H2 Thermal expansion, dimensions X, Y, Z Table H3 shows the figures of the expected thermal expansion from ambient temperature (T = 20 °C) to service temperature.
F10.5266
a) Z X Y Gas outlet flange Drawn for engines
Turbocharger location
TC exh. side
TC aft end
Cylinder No.
5
6
7
8
5
Turbocharger No
1 x ABB 170-L
1 x ABB 175-L
1 x ABB A175-L
2 x ABB A170-L
1 x ABB A170-L
Distance X [mm] Thermal expansion Δx [mm]
3150 1.3
3150 1.3
Distance Y [mm] Thermal expansion Δy [mm]
6710 2.7
6710 2.7
Distance Z [mm] Thermal exansion Δz [mm]
3682 1.5
4562 1.8
Distance Z [mm] Thermal exansion Δz [mm]
3682 1.5
4562 1.8
Remark: For details of engine pipe connections refer to section F5. Dimensions X and Y calculated with gas outlet flange position of 30°.
Table H3 Expected thermal expansion figures at turbocharger gas outlet
26.14.40 – Issue XII.10 – Rev. 0 H–4 Wärtsilä Switzerland Ltd
Marine Installation Manual
H. General installation aspects
RT-flex50-D
H2.4 Contents of fluid in the engine
System
fluid Quantities referring to numbers of cylinders
5
6
7
8
Cylinder cooling water
[kg]
720
930
1040
1170
Lubricating oil
[kg]
740
850
1075
1210
Water in scavenge air cooler(s) 1)
[kg]
165
200
235
265
Total of water and oil in engine 2)
[kg]
1625
1980
2350
2645
Remark: 1) The given water content is approximate. 2) These quantities include engine piping except piping of scavenge air cooling.
Table H4 Fluid quantities in the engine
H2.5 Crane requirements and dismantling heights
H2.5.1 Crane requirements
•
An overhead travelling crane, of 2.5 metric tonnes minimum, is to be provided for normal engine maintenance.
•
The crane is to conform to the requirements of the classification society.
As a general guide Wärtsilä Switzerland Ltd recommend a two-speed hoist with pendent control, being able to select high or low speed, i.e., high
6.0 m/minute, and low 0.6–1.5 m/minute.
H2.5.2 Piston dismantling heights
Figure H3 shows the dismantling height for vertical piston lifting. This dimension is for guidance only and may vary depending on the crane dimension, handling tools and dismantling tolerances.
This dimension is absolutely not binding.
However, please contact Wärtsilä Switzerland Ltd in Winterthur or any of its representatives if these values cannot be maintained, or more detailed information is required.
Wärtsilä Switzerland Ltd H–5 26.14.40 – Issue XII.10 – Rev. 0
925 kg1940 kg1900 kg525 kgPiston with rod completeCylinder liner Cylinder cover withExhaust valveand gland box exhaust valve completecomplete and water guide jacket
Piston rod
RT-flex50-D
Marine Installation Manual
H. General installation aspects
26.14.40 – Issue XII.10 – Rev. 0 H–6 Wärtsilä Switzerland Ltd
Cylinder cover studs
1) Minimum space requirement for the dismantlingof connecting rod.
Drawn for engines with turbochargers on exhaust side.
Dimension heights and space requirements are also applicalbe for
engines with turbocharger on aft end.
342.251a
Fig. H3 Dismantling heights for vertical piston lifting and space requirements for removal of connecting rod
RT-flex50-D Marine Installation Manual
H. General installation aspects
H2.5.3 Dismantling of scavenge air cooler
Beam
In order to facilitate the dismantling of the scavenge air coolers, an adequate lifting facility may be foreseen as shown in figure H4.
Drawn for engines with turbochargers on exhaust side.
Beam
F20.0044
Fig. H4 Dismantling of SAC
Wärtsilä Switzerland Ltd H–7 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
H. General installation aspects
H3
Outline drawings
H3.1
RT-flex50-D TC exh. side
The following engine outline illustrations are pro-
This selection doesn’t cover all variations of the
duced to scale. They represent engine arrangeRT-
flex50-D engines. The drawings of other conments
with ABB A100-L turbochargers.
figurations (number of cylinders, number and type
of turbochargers) are available on request.
Fig. H5 End elevation of Wärtsilä 6RT-flex50-D with ABB A175-L (TC exh. side)
26.14.40 – Issue XII.10 – Rev. 0 H–8 Wärtsilä Switzerland Ltd
396.383
RT-flex50-D Marine Installation Manual
H. General installation aspects
Exhaust side elevation
Remark: 1) Dimension 7088 refers to outer end of flywheel. 1)
Dimensions 1452 and 355 refer to end of crankshaft flange.
Plan view
Fig. H6 Exhaust side elevation and plan view of Wärtsilä 6RT-flex50-D with ABB A175-L (TC exh. side)
Wärtsilä Switzerland Ltd H–9 26.14.40 – Issue XII.10 – Rev. 0
396.383
Marine Installation Manual RT-flex50-D
H. General installation aspects
Fig. H7 End elevation of Wärtsilä 7RT-flex50-D with ABB A175-L (TC exh. side)
26.14.40 – Issue XII.10 – Rev. 0 H–10 Wärtsilä Switzerland Ltd
395.231
RT-flex50-D Marine Installation Manual
H. General installation aspects
Exhaust side elevation
Remarks: 1) Dimension 7968 refers to outer end of flywheel. 1)
Dimensions 1452 and 355 refer to end of crankshaft flange.
Plan view
Fig. H8 Exhaust side elevation and plan view of Wärtsilä 7RT-flex50-D with ABB A175-L (TC exh. side)
Wärtsilä Switzerland Ltd H–11 26.14.40 – Issue XII.10 – Rev. 0
395.231
Marine Installation Manual
RT-flex50-D
H.
General installation aspects
H3.2
RT-flex50-D TC aft end
DAAD010479
Fig. H9 End elevation of Wärtsilä 5RT-flex50-D with ABB A170-L (TC aft end)
26.14.40 – Issue XII.10 – Rev. 0 H–12 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
H. General installation aspects
Exhaust side elevation
Plan view
DAAD010479
Fig. H10 Exhaust side elevation and plan view of Wärtsilä 5RT-flex50-D with ABB A170-L (TC aft end)
Wärtsilä Switzerland Ltd H–13 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
H. General installation aspects
H4 Platform arrangements H4.1 RT-flex50-D TC exh. side
The following platform outline illustrations represent engine arrangements with ABB A100-L turbochargers. This selection of outlines doesn’t cover all variations of the RT-flex50-D engines.
Driving end
Fuel side
Scale
The drawings of other combinations (number of cylinders, number and type of turbochargers) and drawings of platform details are available on request.
Uper platform
Lower platform
Exhaust side
Fig. H11 Platform arrangement for Wärtsilä 6RT-flex50-D with ABB A175-L (TC exh. side)
26.14.40 – Issue XII.10 – Rev. 0 H–14 Wärtsilä Switzerland Ltd
430.723
RT-flex50-D Marine Installation Manual
H. General installation aspects
Upper platform Fuel side
Driving end
Free end
Exhaust side
Scale
Fig. H12 Upper platform for Wärtsilä 6RT-flex50-D with ABB A175-L (TC exh. side)
Wärtsilä Switzerland Ltd H–15 26.14.40 – Issue XII.10 – Rev. 0
430.723
Marine Installation Manual Lower platform Driving end Standard version
H.
RT-flex50-D General installation aspects Free end
Alternative version
Driving end
Free end
Scale
Fig. H13 Lower platform for Wärtsilä 7RT-flex50-D with ABB A175-L (TC exh. side)
26.14.40 – Issue XII.10 – Rev. 0 H–16 Wärtsilä Switzerland Ltd
430.723
Marine Installation Manual
H. General installation aspects
RT-flex50-D
H4.2 RT-flex50-D TC aft end
Drawings available on request
Fig. H14 Platform arrangement for Wärtsilä 5RT-flex50-D with ABB A170-L (TC aft end)
Wärtsilä Switzerland Ltd H–17 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
H. General installation aspects
H5 Engine seating with epoxy resin chocks
The engine seating is integral with the double-bottom structure and is to be of sufficient strength to support the weight of the engine, transmit the propeller thrust, withstand external moments and stresses related to propeller and engine resonance. The longitudinal beams situated under the engine are to extend forward of the engine-room bulkhead by at least half the length of the engine and aft as far as possible.
The maximum allowable rake for these engines is 3° to the horizontal.
Before any engine seating work can be performed make sure that the engine is aligned with the intermediate propeller shaft as described in section L3.
Apart from the normal, conventional engine hold-ing-down studs used to fasten the engine to the tank top plate, a different design is to be applied for the propeller thrust transmission. The propeller thrust is transmitted from the engine thrust bearing to the bedplate and to the tank top plate which is part of the ship’s structure by means of the thrust sleeves located adjacent to the engine thrust bearing.
H5.1 Fitting
The thrust sleeve is fitted in the bottom plate of the engine bedplate and cast in the tank top plate. The diameter of the flame-cut or drilled hole for the thrust sleeve in the tank top is larger than the diameter of the sleeve to allow engine alignment without remachining of the hole. The sleeve in the tank top plate hole is then fixed with epoxy resin material as used for the chocks. The engine holding-down stud is inserted in the sleeve and tightened in the same way as the normal studs. This hydraulically tightened holding-down stud is of the same design as the normal holding-down stud used to fasten the engine to the tank top. Drilling and reaming of the holes in the engine bedplate is carried out by the engine manufacturer. The thrust sleeves with the final tolerance and the holding-down studs are supplied by the shipyard.
H5.2 Drilling of the holes in the tank top plate
The holes for the thrust sleeves must be drilled or flame-cut in the tank top plate before setting the engine in position. These holes are prepared while observing the dimensions given on the drawing ‘Chocking and drilling plan for engine seating with epoxy resin chocks’. The holes for the normal holding-down studs can be drilled or flame-cut either before or after setting the engine in position.
H5.3 Chock thickness
Since the chock thickness cannot be precisely determined before engine alignment is finalized, the standard design of the holding-down stud, thrust sleeve and conical washer allows for the application of chock thicknesses from 25 up to 60 mm. To avoid additional machining of the sleeve to adjust its length, the conical washer is provided with a larger bore compared to the sleeve’s external diameter. The sleeve can protrude beyond the top plate more or less, the space in the washer allows for this variable. At the project stage, if chock thicknesses are foreseen to be more than 60 mm or less than 25 mm, the length of the thrust sleeve and its corresponding holding-down stud as well as the length of the normal holding-down stud must be adapted accordingly. Please note: In any case, if the minimum thickness is less than 25 mm, the epoxy resin supplier must be consulted.
26.14.40 – Issue XII.10 – Rev. 0 H–18 Wärtsilä Switzerland Ltd
Marine Installation Manual
H. General installation aspects
RT-flex50-D
H5.4 Pouring of the epoxy resin chocks
H5.4.1 Conditions before pouring
•
Engine fully aligned.
•
All side stoppers welded in place, wedges not fitted.
•
Studs with thrust sleeves (see figure H16): Thrust sleeves and their accompanying hold-ing-down studs inserted into the corresponding holes with the nuts slightly tightened by hand. All bushes and sponge rubber sealings fixed correctly under the tank top plate. Contact surface washer to top plate smeared with gasket sealant. Fitted studs instead of Studs with thrust sleeves are available on request.
•
Normal holding-down studs (see figure H16): Sponge rubber plugs or similar inserted into bedplate where normal studs are applied.
H5.4.2 Pouring
Epoxy resin material for the thrust sleeve holes is identical to that used for the chocks. The epoxy resin material applied for the chocking of the engine has to fulfill the following requirements:
•
Approved by the major classification societies
•
The following material properties are met:
Properties
Standard
Values
Ultimate compression strength
ASTM D-695
min. 130 MPa
Compression yield point
ASTM D-695
min. 100 MPa
Compressive modulus of elasticity
ASTM D-695
min. 3100 MPa
Deformation under load Load 550 N / 70 °C Load 1100 N / 70 °C
ASTM D-621
max. 0.10 % max. 0.15 %
Curing shrinkage
ASTM D-2566
max. 0.15 %
Coefficient of thermal expansion (0–60 K)
ASTM D-696
max. 50 10–6 1/K
Coefficient of friction
normal
min. 0.3
Pouring of the epoxy resin chocks together with its preparatory work must be carried out either by experts of the epoxy resin manufacturers or by their representatives. Their instructions must be strictly observed. In particular, no yard work on the engine foundation may proceed before completion of the curing period of the epoxy resin chocks.
H5.4.3 Tightening the holding-down studs
The instructions of the epoxy resin manufacturers or their representatives concerning the curing period must be strictly observed before any work on the engine foundation may proceed. On completion of the curing period the supporting devices, i.e. jacking screws, jacking wedges, etc., must be removed before the holding-down studs are tightened. All engine holding-down studs are tightened by means of a hydraulic pre-tensioning jack. The tightening procedure begins at the driving end and continues alternating from side to side in the direction of the engine free end. After tightening all engine holding-down studs, fit the side stopper wedges.
Pre-tension force per stud Fv [kN] 1)
330
Hydraulic tightening pressure p [bar]
1500
Code number of hydraulic pre-tensioning jack 2)
94145
Remark: 1) Including an efficiency loss during tightening process. For guidance only. 2) The hydraulic pre-tensioning jack is part of the engine builder’s standard tool kit (see section J2).
Table H6 Tightening pressure
Table H5 Required properties of epoxy resin material
Wärtsilä Switzerland Ltd H–19 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
H.
General installation aspects
H5.5
Engine foundation
Note: Remarks: For section ‘B-B’ refer to figure H24 up to figure H26. 1) Final height h to be determined by shipyard. For view on ‘C-C’ and D-D refer to figure H16. For a guide-line see figure F21 ‘Lubricating oil drain tank’. This is a typical example, other foundation arrangements 2) Final chock thickness to be determined by the shipyard. may be possible.
A–A
401.665a
401.666a
401.667a
401.668a
Fig. H15 Engine seating and foundation
26.14.40 – Issue XII.10 – Rev. 0 H–20 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
H. General installation aspects
H5.6 Engine holding-down studs Stud with thrust sleeve
Arrangement before pouring the epoxy resin chocks Arrangement after pouring the epoxy resin chocks
Normal holding-down stud
Arrangement before pouring the epoxy resin chocks Arrangement after pouring the epoxy resin chocks
401.665a 401.666a 401.667a Note: For parts list see table H7. For section B–B refer to figures H24 through H26.
401.668a
Fig. H16 Cross section of holding-down studs and epoxy resin chocks
Wärtsilä Switzerland Ltd H–21 26.14.40 – Issue XII.10 – Rev. 0
60 mm.
Marine Installation Manual RT-flex50-D
H. General installation aspects
Number of cylinders
5
6
7
8
Remarks
Pos.
Description
Execution with thrust sleeves
001
Engine side stopper
3
3
4
4
These parts cover a standardized chock thickness chock thickness of toof 25 mm up to 002
Elastic bolt M48 x 440
38
44
50
56
003
Round nut M48
38
44
50
56
004
Sleeve (Thrust sleeve)
8
8
8
8
005
Bush
8
8
8
8
006
Special round nut M48
38
44
50
56
007
Seating washer
30
36
42
48
008
Bush
30
36
42
48
009
Sealing piece
for chock geometry see figures H24 through H26
Material and design determined by shipyard
010
Rubber joint disc
8
8
8
8
011
Rubber pin
30
36
42
48
Table H7 Parts list for engine seating with epoxy resin chocks
002
Elastic bolt M48 x 440
34CrMo4; SCM435
Heat treated, Rm = 800–900 N/mm2
Sharp edges removed
401.786
003 Round nut M48 Note: For all position numbers refer to figure H16 and parts list, table H7. 345.876 Sharp edges removed 42CrMo4; SCM440 Heat treated, Rm = 900–1100 N/mm2
Fig. H17 Elastic bolt, round nut
26.14.40 – Issue XII.10 – Rev. 0 H–22 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
H.
General installation aspects
004
Sleeve (thrust sleeve)
Sharp edges removed
401.785a
34CrMo4; SCM435
005 Bush 006 Spherical round nut M48
Sharp edges removed Sharp edges removed
34CrMo4; SCM435 34CrMo4; SCM435
246.051
401.787
008 Seating washer
Sharp edges removed
007 Seating washer
Sharp edges removed
34CrMo4; SCM435 343.352a
34CrMo4; SCM435
401.838
Note: For all position numbers refer to figure H16 parts list, table H7. Fig. H18 Sleeve, bush, spherical nut, seating washer
Wärtsilä Switzerland Ltd H–23 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
H. General installation aspects
009 Sealing piece 010 Rubber joint disc
367.1
19 401.836
011 Rubber pin
401.837
Fig. H19 Sealing piece, joint disc, rubber pin
26.14.40 – Issue XII.10 – Rev. 0 H–24 Wärtsilä Switzerland Ltd
Marine Installation Manual H. General installation aspects RT-flex50-D
H5.6.1 Engine seating side stoppers
402.028
001 Engine side stopper
Number of
Number of
cytlinders
side stoppers
5
3 pairs
6
3 pairs
7
4 pairs
8
4 pairs
Welded from sheet metal parts.
Weld the stoppers in place when the engine is aligned.
Note: For the arrangement and number of side stoppers refer to figures H21 through H23.
Fit the wedges when the engine holding down bolts are tightened.
S235JR; STKM 12A
402.023 h = 75–95 mm, depending on chock thickness. To be determined by shipyard. S235JR; STKM 12A
402.023 S235JR; STKM 12A St 37–2 325.275
Fig. H20 Engine seating side stoppers
Wärtsilä Switzerland Ltd H–25 26.14.40 – Issue XII.10 – Rev. 0
402.024
Marine Installation Manual
RT-flex50-D
H.
General installation aspects
Side stopper arrangement
401.665a
Driving end
Free end
Side stopper
401.666a
Fig. H21 5&6RT-flex50-D Side stopper arrangement
26.14.40 – Issue XII.10 – Rev. 0 H–26 Wärtsilä Switzerland Ltd
Marine Installation Manual H. General installation aspects RT-flex50-D Fig. H22 7RT-flex50-D Side stopper arrangement Driving end Free end 401.667a Side stopper
Wärtsilä Switzerland Ltd H–27 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
H. General installation aspects
Free endDrivingend
401.668a
Side stopper
Fig. H23 8RT-flex50-D Side stopper arrangement
26.14.40 – Issue XII.10 – Rev. 0 H–28 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
H. General installation aspects
H5.6.2 Chocking and drilling plan
Driving end
Free end
401.665a
Note:
For details of view X–X and Y refer to figure H27 and table H9.
For details of chocks refer to table H8 Plan view B–B, refer to figure H15.
For details of side stoppers refer to figure H20.
401.666a
Fig. H24 5&6RT-flex50-D Chocking and drilling plan for engine seating with epoxy resin chocks
Wärtsilä Switzerland Ltd H–29 26.14.40 – Issue XII.10 – Rev. 0
Plan view B–B, refer to figure H15.
Marine Installation Manual RT-flex50-D
H. General installation aspects
26.14.40 – Issue XII.10 – Rev. 0 H–30 Wärtsilä Switzerland Ltd
Free end Driving end
401.667a
Note:
For details of view X–X and Y refer to figure H27 and table H9.
For details of chocks refer to table H8
For details of side stoppers refer to figure H20.
Fig. H25 7RT-flex50-D chocking and drilling plan for engine seating with epoxy resin chocks
Plan view B–B, refer to figure H15.
Driving
Free
end
end
401.668a
Note:
For details of view X–X and Y refer to figure H27 and table H9.
For details of chocks refer to table H8
For details of side stoppers refer to figure H20.
RT-flex50-D Marine Installation Manual
H. General installation aspects
Wärtsilä Switzerland Ltd H–31 26.14.40 – Issue XII.10 – Rev. 0
Fig. H26 8RT-flex50-D chocking and drilling plan for engine seating with epoxy resin chocks
cylinders
holes
Marine Installation Manual
RT-flex50-D
H. General installation aspects
Dimensions of epoxy resin chocks (execution with thrust sleeves) 1)
Number of cylinders
Max. permanent mean surface pressure of chock 2)
Total chock length
Required chock depth
Total net chocking area
Required quantity of epoxy resin material 3)
(N/mm2)
(mm)
(mm)
(cm2)
at 25 mm at 60 mm (dm3)
5
4.5
4436
D
400
33 764
92
218
6
4.5
5200
D
400
39 717
108
255
7
4.5
5964
D
400
45 671
124
294
8
4.5
6728
D
400
51 624
140
331
Remark: 1) For the layout is taken into consideration:
–
Engine mass (incl. net engine mass, vibration damper, flywheel, water, and oil)
–
Engine holding down studs fully tightened according to fitting instructions. 2) The max. permissible mean surface pressure of the epoxy resin chocks has to be determined by
the shipyard in accordance with the classification society/rules.
3) Referring to a standardized chock thickness of 25 up to 60 mm.
Table H8 Details and dimensions of epoxy resin chocks
Number of
Total number of
for thrust sleeves (see fig. H27)
for holding-down studs (see fig. H27)
No.
A (mm)
No.
B (mm)
5
38
8
115 +3 –0
30
562
6
44
8
115 +3 –0
36
562
7
50
8
115 +3 –0
42
562
8
56
8
115 +3 –0
48
562
Table H9 Number and diameter of holes drilled into top plate
401.665a
Note:
See also drilling plans, figure H24 to figure H26.
401.666a
401.667a Hole for thrust sleeves Hole for
401.668a
engine holding-down studs
Fig. H27 Drilling plan details
26.14.40 – Issue XII.10 – Rev. 0 H–32 Wärtsilä Switzerland Ltd
Marine Installation Manual
H. General installation aspects
RT-flex50-D
H5.7 Engine alignment tools Jacking screws M48x2
DAAD006081
DAAD006164 DAAD006197 DAAD006203
DAAD006054
Note:
Provide thread protection (Sponge rubber ring) to allow easy removal of the jacking screws after pouring the chocks, see also figures H29 to H30.
Fig. H28 Arrangement of jacking screw
Description
5 cyl.
6 cyl.
7 cyl.
8 cyl.
Jacking screw M48x2
12
14
16
18
Sponge rubber ring
2
2
2
2
Table H10 Number of jacking screws to be applied
Wärtsilä Switzerland Ltd H–33 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
H.
RT-flex50-D General installation aspects
Position of jacking screws
Jacking screws
DAAD006081
Jacking screws
DAAD006164
Remark:
) Dimension marked with ): Provide thread protection (Sponge rubber ring) to allow easy removal of the jacking screws after pouring the chocks.
Note: Cross section A–A: see figure H28
Fig. H29 Position of jacking screws for engine alignment of 5&6RT-flex50-D
26.14.40 – Issue XII.10 – Rev. 0 H–34 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
H. General installation aspects
Jacking screws
DAAD006197
Jacking screws
DAAD006203
Note: cross section A–A see figure H28 Remark:
) Dimension marked with ): Provide thread protection (Sponge rubber ring) to allow easy removal of the jacking screws after pouring the chocks.
Fig. H30 Position of jacking screws for engine alignment of 7&8RT-flex50-D
Wärtsilä Switzerland Ltd H–35 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
H. General installation aspects
H6 Engine coupling
Figures H31 and H32 give a dimensioned cross-section of the engine coupling showing the arrangement of the fitted bolts, details and the number of bolts and nuts to be supplied by the shipyard.
H6.1 Fitting coupling bolts
Drilling and reaming of the engine and shaft couplings is to be carried out using a computer numerically controlled drilling machine or accurately centred jig and great care is to be taken in matching and machining mating flanges together. Fitted bolt hole tolerances are to be H7 and fitted bolts are to be available for inserting in the holes on completion of reaming. Each fitted bolt is to be stamped with its position in the coupling with the same mark stamped adjacent to the hole.
In the event of pitch circle error leading to misalignment of bolt holes it is important to remedy the situation by joint cylindrical reaming an oversize hole and fitting an individually machined fitted bolt. Fitted bolts are to locate with a slight interference fit but not requiring heavy hammer blows. If there is any doubt that a fitted bolt is too slack or too tight refer to the classification society surveyor and a representative of the engine builder.
To tighten the coupling bolts it is important to work methodically, taking up the threads on opposite bolts to hand tight followed by sequential torque tightening. Mark each bolt head in turn, 1, 2, 3, etc., and tighten opposite nuts in turn to an angle of 40° making sure the bolt head is securely held and unable to rotate with the nut. Castellated nuts are to be locked according to the requirements of class with either locking wire or split pins. Use feeler gauges during the tightening process to ensure the coupling faces are properly mated with no clearance.
26.14.40 – Issue XII.10 – Rev. 0 H–36 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
H. General installation aspects
Dimension A = flange thickness of intermediate shaft see aslo bolt in figure H32.
Coupling bolts have to be
mounted from the aft side.
For tightening:
see separate instruction.
381.173b
Intermediate shaft
Engine flange
All untoleranced coordinate dimensions for the bores have to be ± 0.4
341.501
Number of cylinders Number of fitted bolts
5 10
6 10
7 10
8 12
Fig. H31 Engine coupling fitted bolt arrangement
Wärtsilä Switzerland Ltd H–37 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
H. General installation aspects
Recommended design of bolts and nuts for crankshaft coupling
Coupling bolts and nuts supplied by the shipyard.
Fig. H32 Detail of coupling bolt and nut
26.14.40 – Issue XII.10 – Rev. 0 H–38 Wärtsilä Switzerland Ltd
341.501
RT-flex50-D Marine Installation Manual
H. General installation aspects
Fig. H33 Engine coupling and flywheel casing.
Wärtsilä Switzerland Ltd H–39 26.14.40 – Issue XII.10 – Rev. 0
354.256
Marine Installation Manual
RT-flex50-D
H. General installation aspects
H7 Engine earthing
Electric current flows when a potential difference exists between two materials. The creation of a potential difference is associated with ‘thermoelectric’ by the application of heat, ‘tribo-electric’ between interactive surfaces, ‘electrochemical’ when an electrolytic solution exists and ‘electromagnetic induction’ when a conducting material passes through a magnetic field. Tracking or leakage currents are created in machinery by any of the above means and if they are not adequately directed to earth, can result in component failures, in some case fires and interference with control and monitoring instrumentation.
H7.1 Preventive action
Earthing brushes in contact with slip-rings and the chassis bonded by braided copper wire are common forms of protecting electric machines. Where operating loads and voltages are comparatively low then the supply is isolated from the machine by an ‘isolating transformer’, often the case with hand held power tools. The build specification dictates the earthing procedure to be followed and the classification society is to approve the final installation.
On vessels with star-wound alternators the neutral is considered to be earth and electrical devices are protected by automatic fuses. Ensure instrument wiring meets the building and classification society specifications and is shielded and isolated to prevent induced signal errors and short circuits. In certain cases large items of machinery are isolated from their foundations and couplings are isolated to prevent current flow, e.g., when electric motors are connected to a common gear box.
Retrospective fitting of earthing devices is not uncommon but due consideration is to be given at the design stage to adequate shielding of control equipment and earthing protection where tracking and leakage currents are expected. Magnetic induction and polarisation are to be avoided and degaussing equipment incorporated if there is likely to be a problem.
26.14.40 – Issue XII.10 – Rev. 0 H–40 Wärtsilä Switzerland Ltd
Marine Installation Manual
H. General installation aspects
RT-flex50-D
H7.2 Earthing slip-rings
H7.2.1 Main shaft earthing system
Figures H34 and H35 show a typical shaft earthing system. The slip-ring (1) is supplied as matched halves to suit the shaft and secured by two tension bands (2) using clamps (12). The slip-ring mating faces are finished flush and butt jointed with solder. The brushes (4) are housed in the twin holder (3) clamped to a stainless steel spindle (6) and there is a monitoring brush (11) in a single holder (10) clamped to an insulated spindle (9). Both spindles are attached to the mounting bracket (8). The electric cables are connected as shown in figure H36 with the optional voltmeter. This instrument is at the discretion of the owner but it is useful to observe that the potential to earth does not rise above 100 mV.
Differing combinations of conducting material are available for the construction of the slip-rings however, alloys with a high silver content are found to be efficient and hard wearing.
F10.4354
Fig. H34 Shaft earthing arrangement
Wärtsilä recommend installing a shaft earthing device on the intermediate shafting as illustrated in figure H35.
F10.4355
Fig. H35 Shaft earthing slip-ring arrangement
Wärtsilä Switzerland Ltd H–41 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
H. General installation aspects
F10.4356
Fig. H36 Shaft earthing with condition monitoring facility
26.14.40 – Issue XII.10 – Rev. 0 H–42 Wärtsilä Switzerland Ltd
Marine Installation Manual
H. General installation aspects
RT-flex50-D
H8 Engine stays
Ship vibrations and engine rocking caused by the engine behaviour (as described in chapter D ‘Engine dynamics’) are reduced by fitting longitudinal and lateral stays. The five-cylinder engines are liable to strong crankshaft axial vibrations throughout the full load speed range, leading to excessive axial and longitudinal vibration at the engine top. Lateral components of forces acting on the crossheads result in pulsating lateral forces and side to side or lateral rocking of the engine. This lateral rocking may be transmitted through the engine-room bottom structure to excite localized vibration or hull resonance. In some installations with five-cylinder engines, especially those coupled to very stiff intermediate and propeller shafts, the engine foundation can be excited at a frequency close to the full load speed range resonance. This leads to increased axial (longitudinal) vibrations at the engine top and as a result, to vibrations in the ship’s structure.
Fitting stays between the engine and the hull reduces the engine vibrations and the vibration transmission to the ship’s structure.
H8.1 Stay arrangement
Table D3 ‘Countermeasures for dynamic effects’ indicates in which cases the installation of lateral and longitudinal stays are to be considered.
H8.1.1 Installation of lateral stays
Two stay types can be considered:
–
Hydraulic stays: two by two installed on the exhaust and on the fuel side of the engine.
–
Friction stays: two stays installed on the engine exhaust side.
H8.1.2 Installation of longitudinal stays
Two longitudinal stays of the friction type are installed on engine free-end, if necessary (see table D3).
Wärtsilä Switzerland Ltd H–43 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
H. General installation aspects
Stays fitted on exhaust side
Free end
Notes:
Detail drawings including the fitting instructions are provided by the engine builder (installation set).
X = clear width between engine and ship side, Xmin. = 1385mm, Xmax. = 4100mm. (Actual value X" to be determined by the shipyard.)
001-007 Stays with friction shim 008 Hexagon head bolt M24X100 009 Hexagon nut
Driving end
View A
Ship sideEngine side
344.415d
Fig. H37 Lateral stay details – friction type, on exhaust side
26.14.40 – Issue XII.10 – Rev. 0 H–44 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
H. General installation aspects
Stays fitted on fuel side
Notes:
Free end Detail drawings including the fitting instructions are provided by the engine builder (installation set).
X = clear width between engine and ship side, Xmin. = 1385mm, Xmax. = 4100mm. (Actual value X" to be determined by the shipyard.)
001-007 Stays with friction shim 008 Hexagon head bolt M24X100 009 Hexagon nut
Driving end
View A
Ship side Engine side
349.343b
Fig. H38 Lateral stay details – friction type, on fuel side
Wärtsilä Switzerland Ltd H–45 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
H. General installation aspects
Notes:
X = clear width between engine and ship side, L = length of the round bar.
When determining X and L observe: Xmin. = 550mm, L. = X - 430mm
Free end
with external bladder accumulator
Driving end
with integrated bladder accumulator
View A
Engine side Ship side
354.281a
Fig. H39 Lateral stay details – hydraulic type
26.14.40 – Issue XII.10 – Rev. 0 H–46 Wärtsilä Switzerland Ltd
Marine Installation Manual
RT-flex50-D
H. General installation aspects
H9 Fire protection
In areas such as under-piston spaces and scavenge air receiver, fire may develop. The engine is fitted with a piping system which leads the fire extinguishing agent into the mentioned areas. In the drawings of section F5 “Engine pipe connections” the relevant connection is indicated. The final arrangement of the fire extinguishing system is to be submitted for approval to the relevant classification society, where such protection is required.
H9.1 Extinguishing agents
Various extinguishing agents can be considered for fire fighting purposes. Their selection is made either by shipbuilder or shipowner in compliance with the rules of the classification society involved. Table H11 gives the recommended quantity of 45 kg bottles of CO2 for each engine.
Steam as an alternative fire extinguishing medium is permissible for the scavenge air spaces of the piston underside but may cause corrosion if countermeasures are not taken immediately after its use.
These countermeasures comprise:
•
Opening scavenge spaces and removing oil and carbon deposits.
•
Drying all unpainted surfaces and applying rust protection (i.e. lubricating oil).
Note:
Steam is not suitable for crankcase fire extinguishing as it may result in damage to vital parts such as the crankshaft. If steam is used for the scavenge spaces at piston underside, a water trap is recommended to be installed at each entry to the engine and assurance obtained that steam shut-off valves are tight when not in use.
Extinguishing medium
Piston underside at bottom dead centre including common section of cylinder jacket
Bottle
Recommended total number of fire extinguishing bottles Number of cylinders
Volume [m3/cyl.]
Mass [kg/cyl.]
Size [kg]
5
6
7
8
Carbon-dioxide
3.5
1.3
45
1
2
2
2
Table H11 Recommended quantities of fire extinguishing medium
Wärtsilä Switzerland Ltd H–47 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
H. General installation aspects
26.14.40 – Issue XII.10 – Rev. 0 H–48 Wärtsilä Switzerland Ltd
Marine Installation Manual
I. Engine emissions
RT-flex50-D
I1 Exhaust gas emissions
I1.1 IMO-2000 regulations
The International Maritime Organisation (IMO) is the specialized agency of the United Nations (UN) dealing with technical aspects of shipping. For more information see http://www.imo.org.
I1.1.1 Establishment of emission limits for ships
In 1973, agreement on the establishment of an International Convention for the Prevention of Pollution from ships was reached. It was modified in 1978 and is now known as MARPOL 73/78. The Annex VI to MARPOL 73/78, which entered into force in 2005, contains regulations limiting or prohibiting certain types of emissions from ships, including limitations with respect to the allowed air pollution. Following the entry into force of the annex, a review process was started, which resulted in an amended Annex IV, which was adopted by the IMO in October 2008 and will enter into force in July 2010. This amended Annex IV includes provisions for the further development of the emissions regulations up to 2020.
I1.1.2 Regulation regarding NOx emissions of diesel engines
Regulation 13 of Annex IV specifies a limit for the nitrogen oxide (NOx) emissions of engines installed on ships, which has a direct implication on propulsion engine design. Depending on the rated speed of the engine and the date of keel laying of the vessel, the weighted average NOx emission of that engine must not exceed the maximum allowable value as indicated by the respective curves in the following diagram.
2
6 4 8 10 12 14 16 18 20 0 0 1600140012001000800600400200 A B C Engine speed [rpm]
Tier I: 1st January.2000, global
Tier II: 1st January.2011, global. After 2016, outside emission control areas
Tier III: 2016, in emission control areas
F20.0086 Fig. I1 Speed dependent maximum average NOx emissions by engines
The rules and procedures for demonstrating and Annex VI and is largely based on the latest revision verifying compliance with this regulation are laid of ISO 8178. down in the NOx Technical code which is part of
NOx emission [g/kWh]
A
B
C
Wärtsilä Switzerland Ltd I–1 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
I. Engine emissions
I1.2 Measures for compliance with the IMO regulation
In the whole rating field of the Wärtsilä RT-flex50-D the IMO regulation is fulfilled by the use of the Low NOx Tuning concept as shown in figure I2.
I1.2.1 Low NOx Tuning
Low NOx Tuning includes well tested measures, which lead to lowest disadvantage in engine costs and fuel consumption while maintaining the high reliability levels of pre-IMO tuned engines.
Engine power
[% R1]
100
R1
95
RT-flex50-D engines
90
85
80
R3
Low NOx Tuning
75
70
R4
R2
Engine speed
65 70
75 80 85 90 95 100
[% R1]
F10.5124
Fig. I2 Wärtsilä RT-flex50-D: compliance with IMO regulations
26.14.40 – Issue XII.10 – Rev. 0 I–2 Wärtsilä Switzerland Ltd
Marine Installation Manual
I. Engine emissions
RT-flex50-D
I2 Engine noise
It is very important to protect the ship’s crew/passengers from the effects of machinery space noise. Therefore the scavenge air ducts and the exhaust duct system (both expansion joints of gas outlet
I2.1 Engine surface sound pressure level
Figure I3 shows the average air borne noise level, measured at 1m distance and at nominal MCR. Near to the turbocharger (air intake) the maximum
Lp [dB]
and gas inlet of turbocharger) should be equipped with the standard insulation, and the turbocharger with the standard intake silencer.
measured noise level will normally be about 3–5 dB(A) higher than the average noise level of the engine.
Overall average LpA in dB(A)
130
120
110
8RT-flex50-D
100
130
120
110
100
80
70
20
30
40
50
NR60 5RT-flex50-D
90
8RT-flex50-D
5RT-flex50-D
80
70
60
50
31.5 63 125 250 500 1k 2k 4k 8k
Octave band centre frequency in [Hz]
Average values Lp in dB in comparison with ISO’s NR-curves
F10.5280 and overall average values LpA in dB(A), at nominal MCR under free field conditions. Fig. I3 Engine sound pressure level at 1 m distance
Wärtsilä Switzerland Ltd I–3 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
I. Engine emissions
I2.2 Engine exhaust sound pressure level at funnel top
The sound pressure level from the engine exhaust gas system without boiler and silencer – given in figure I4 – is related to:
•
a distance of of one metre from the edge of the exhaust gas pipe opening (uptake)
•
an angle of 30° to the gas flow direction
•
nominal MCR
Each doubling of the distances reduces the noise level for about 6dB.
Lp [dB]
Depending on the actual noise level allowed on the bridge wing – which is normally maximum 60–70 dB(A) – a simple flow silencer of the absorption type may be necessary and placed after the exhaust gas boiler. The silencer is dimensioned for a gas velocity of approximately 35 m/s with a pressure loss of approx. 2 mbar at specified MCR.
Overall average LpA in dB(A)
140
130
120
130
120
110
100
80
70
20
30
40
50
NR60 8RT-flex50-D
110
5RT-flex50-D
100
90
8RT-flex50-D
5RT-flex50-D
80
70
60
50
31.5 63 125 250 500 1k 2k 4k 8k
Octave band centre frequency in [Hz]
Average values Lp in dB in comparison with ISO’s NR-curves and overall average values LpA in dB(A), at nominal MCR; at 1m distance from the edge of the exhaust gas pipe opening at an
angle of 30° to the gas flow. Exhaust gas system without boiler and silencer. Fig. I4 Engine exhaust gas sound pressure level at funnel top
F10.5281
26.14.40 – Issue XII.10 – Rev. 0 I–4 Wärtsilä Switzerland Ltd
Marine Installation Manual
I. Engine emissions
RT-flex50-D
I2.3 Engine structure borne noise
The vibrational energy is propagated via engine The sound pressure levels in the accommodations structure, bedplate flanges and engine foundation can be estimated with the aid of standard empirical to the ship’s structure which starts to vibrate, and formulas and the vibration velocity levels given in thus emits noise. figure I5.
Lv, re 5E-8 m/s [d/B]
100
90
80
70
60
8RT-flex50-D
5RT-flex50-D
50
40
30
16k Octave band centre frequency in [Hz]
Structure borne noise level Lv in dB at nominal MCR. Fig. I5 Structure borne noise level at engine feet vertical
F10.5282
31.5
63 125 250 500 1k 2k 4k 8k
Wärtsilä Switzerland Ltd I–5 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
I. Engine emissions
26.14.40 – Issue XII.10 – Rev. 0 I–6 Wärtsilä Switzerland Ltd
Marine Installation Manual
J. Tools
RT-flex50-D
J1 Introduction
This chapter illustrates tools available for the running and maintenance of the main engine. It identifies their individual masses and dimensions to assist in the design and layout of the engine-room workshop and tool storage facilities.
The tools may not be part of the engine supply but they may be purchased separately and certain items may be removed or added depending on the requirements of the shipyard or operator. Therefore, we recommend a check is made of the extent of delivery before starting the detail design of workshop and storage spaces.
Please also note that the tools may differ from the illustrations in this book depending on the source of supply.
For tools with a mass of more than 25 kg, the mass normally is indicated.
Chapter J is organised as follows:
–
Standard tools (J2) Tools and devices required for routine maintenance operations on the engine.
–
Recommended special tools (J3) Additional tools recommended by Wärtsilä Switzerland Ltd, which will allow certain maintenance operations to be carried out more efficiently than with the use of standard tools.
–
Special tools, available on loan (J4) Initially loaned for transportation and erection of the engine. They are returned to the engine manufacturer after completion of engine erection.
–
Storage proposal (J5) Examples of tool panel arrangements and convenient locations for mounting the panels adjacent to the engine.
Wärtsilä Switzerland Ltd J–1 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual J. Tools RT-flex50-D
J2 Standard tools
This section is being prepared and will be added as soon as possible.
26.14.40 – Issue XII.10 – Rev. 0 J–2 Wärtsilä Switzerland Ltd
Marine Installation Manual
J. Tools
RT-flex50-D
J3 Recommended special tools
This section is being prepared and will be added as soon as possible.
Wärtsilä Switzerland Ltd J–3 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual J. Tools RT-flex50-D
J4 Special tools, obtainable on loan
This section is being prepared and will be added as soon as possible.
26.14.40 – Issue XII.10 – Rev. 0 J–4 Wärtsilä Switzerland Ltd
Marine Installation Manual
J. Tools
RT-flex50-D
J5 Storage proposal
The following proposals are a guide and intended to assist the shipyard in deciding where and how to locate the main-engine tools. The quantity and actual layout of the tool panels may have to be agreed between the shipyard and the ship owner and their location depends on the design and layout of the engine room, however tool panels should be easily accessible, located in clean, well ventilated and dry areas with the tools protected against rust. It is advisable to create tool inventories to enable engine-room staff to keep a proper check of the condition and location of the tools.
The extent of the supplies and services is determined exclusively by the relevant supply contract.
The figure shown on the right is an artists impression of a convenient solution to storing tool panels.
F10.5093
Fig. J1 Tool panel storage arrangement
Wärtsilä Switzerland Ltd J–5 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
J. Tools
J5.1 Tool panels
3
Tool 12
Hydraulic
cabinet Valve rotating device
store
Nozzle test
A
room
B
Workshop space (W)
Upper platform (UP) 4
Lower platform (LP)
557 7
Floor (F) 89
Panel 1 General tools
Panel 2
Valve seat grinding / control tools Panel 3
Nozzle dismantling / overhaul
Panel 4
Cylinder liner / head dismantling Panel 5
Piston dismantling / overhaul
Panel 7
Piston / various tools
Panel 8
Crankcase tools
Panel 9
Gear drive dismantling / control
A Tool cabinet B Hydraulic tools and fittings
F10.5288
Fig. J2 Tool panel location
26.14.40 – Issue XII.10 – Rev. 0 J–6 Wärtsilä Switzerland Ltd
Marine Installation Manual
J. Tools
RT-flex50-D
Panel 1
(typical)
Design number and arrangement of panels
for general tools in the workshop according to
shipbuilders / owners practice.
(Not available from Wärtsilä Switzerland Ltd)
F10.3389
Fig. J3 Tool panel 1: General tools
Wärtsilä Switzerland Ltd J–7 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
J. Tools
Panel 2
94364
94279 94292 94259 Outline drawings and code numbers of tools. Z X Y X: approx. 900 mm Y: approx. 450 mm
Z:
approx. 140 mm
Dimensions
and arrangement of tools in this panel are to be determined
according to shipbuilder’s or owner’s practice.
This panel is considered as a propsal only There is no liability for completeness.
F10.5095
Fig. J4 Tool panel 2: for valve seat grinding / control tools
26.14.40 – Issue XII.10 – Rev. 0 J–8 Wärtsilä Switzerland Ltd
Marine Installation Manual
J. Tools
RT-flex50-D
Panel 3
Outline
drawings and code numbers of tools. Spanners Z X Y X: approx. 900 mm Y: approx. 450 mm Z: approx. 240 mm
Dimensions and arrangement of tools in this panel are to be determined
according to shipbuilder’s or owner’s practice.
This panel is considered as a propsal only There is no liability for completeness.
F10.5096
Fig. J5 Tool panel 3: for nozzle dismantling / overhaul
Wärtsilä Switzerland Ltd J–9 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
J. Tools
Panel 4
Outline
drawings and code numbers of tools. 94342 94345 94265 94265 94270 Z X Y X: approx. 1400 mm Y: approx. 1400 mm
Z: approx. 400 mm
Dimensions and arrangement of tools in this panel are to be determined
according to shipbuilder’s or owner’s practice.
This panel is considered as a propsal only There is no liability for completeness.
F10.5097
Fig. J6 Tool panel 4: for cylinder liner / head dismantling
26.14.40 – Issue XII.10 – Rev. 0 J–10 Wärtsilä Switzerland Ltd
Marine Installation Manual
J. Tools
RT-flex50-D
Panel 5
Outline
drawings and code numbers of tools. 94410 94345c 94345b 9434894338 94366 94366a Z X Y X: approx. 1000 mm Y: approx. 1000 mm Z: approx. 220 mm
Dimensions and arrangement of tools in this panel are to be determined
according to shipbuilder’s or owner’s practice.
This panel is considered as a propsal only There is no liability for completeness.
F10.5108
Fig. J7 Tool panel 5: for piston dismantling / overhaul
Wärtsilä Switzerland Ltd J–11 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
J. Tools
Panel 6
Outline
drawings and code numbers of tools. 94831
X: approx. 900 mm
Y: approx. 900 mm
Z: approx. 170 mm
Z
X Y
Dimensions and arrangement of tools in this panel are to be determined
according to shipbuilder’s or owner’s practice.
This panel is considered as a propsal only There is no liability for completeness.
F10.5100
Fig. J8 Tool panel 6: for piston / various tools
26.14.40 – Issue XII.10 – Rev. 0 J–12 Wärtsilä Switzerland Ltd
Marine Installation Manual
J. Tools
RT-flex50-D
Panel 7
Outline
drawings and code numbers of tools. 94155 94118 94120 94155a 94119 Z X Y X: approx. 900 mm Y: approx. 450 mm Z: approx. 260 mm
Dimensions and arrangement of tools in this panel are to be determined
according to shipbuilder’s or owner’s practice.
This panel is considered as a propsal only There is no liability for completeness.
F10.5101
Fig. J9 Tool panel 7: Crankcase tools
Wärtsilä Switzerland Ltd J–13 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
J. Tools
Panel 8
Outline
drawings and code numbers of tools. 94323 Z X Y X: approx. 900 mm Y: approx. 450 mm Z: approx. 320 mm
Dimensions and arrangement of tools in this panel are to be determined
according to shipbuilder’s or owner’s practice.
This panel is considered as a propsal only There is no liability for completeness.
F10.5102
Fig. J10 Tool panel 8: for gear drive dismantling / control
26.14.40 – Issue XII.10 – Rev. 0 J–14 Wärtsilä Switzerland Ltd
Marine Installation Manual
K. Spare parts
RT-flex50-D
K1 Introduction
This chapter illustrates spare parts required for running and maintenance of the main engine. For details of the spare parts required for the auxiliary and ancillary equipment refer to manufacturer’s documentation. The items identified in the “List of spare parts” in section K2 comprise the minimum spare parts recommended by the International Association of Classification Societies (IACS).
The spare parts may not be part of the engine supply but they may be ordered separately and certain items may be deleted or added depending on the requirements of the shipyard or operator. Therefore we recommend that the extent of delivery is determined before designing the storage facilities.
Illustrations are provided for some spare parts (in section K3) giving an aid for designing the storage facilities. The mass and size of spare parts assist the designer to calculate the total additional mass to be carried.
Section K4 describes the storage of spare parts and the protection against corrosion.
K2 List of spare parts
This list is intended for single engined installations. In multi-engined installations the required spare parts are only necessary for one engine.
Column IACS:
Minimum spare parts recommended by the International Association of Classification Societies (IACS Rec. No. 26, 1990).
Columns „Additional parts“:
Spare parts recommended by WCH (Wärtsilä Switzerland Ltd) for 10’000 to 30‘000 hrs of operation which can be supplied at an extra price. These spare parts are recommended in addition to the IACS ones. Each column is to be considered for itself, e.g. „Column 20’000 hrs“ already contains the parts listed in „Column 10’000 hrs“. For the following Classification Societies IACS spare parts are considered as a requirement: CCS, GL, KR, NK, RS and the following ones as a recommendation: ABS, BV, DNV, LR, PRS, RINA. The statement made in brackets, for e.g. (2 per main bearing), is an information giving the number of parts per bearing or per cylinder, or per valve, etc., actually fitted in the engine. It is not necessarily the number of spare parts supplied.
The following spare parts list covers the needs of RT-flex50-D TC exh. side. For RT-flex50-D TC aft end, parts for exhaust gas turbocharging systems have to be revised.
Wärtsilä Switzerland Ltd K–1 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
K. Spare parts
Item
Spare parts
Code No.
Supply per ship
Additional parts to IACS Recommended by WCH for
IACS
Zero to 10’000 hrs
Zero to 20’000 hrs
Zero to 30’000 hrs
N = number of cylinders
Main bearing (fig. K1)
Main bearing shell, upper half Main bearing shell, lower half Elastic stud for main bearing (4 per bearing) Round nut for elastic stud
IF 11331 IF 11332 IF 11161 IF 11162
1 1 4 4
Thrust bearing (fig. K2)
Thrust pad for ahead side of thrust bearing (Set of 5 pads per thrust bearing for 5 or 6 cyl. eng.) (Set of 6 pads per thrust bearing for 7 or 8 cyl. eng.) Depending on direction of rotation and propeller (FPP or CPP) please refer to Code Book
IF 12241 and/or IF 12242
1 set 1 set
Cylinder liner
For conventional lubricating system
Cylinder liner compl. w/o antipolishing ring (without O-rings and joint rings) Gasket, O-rings, steam resist. (set for liner) Upper Insulation bandage, complete Water guide jacket, upper part (1 per liner)
IF 21241 IF 21340 IF 21280 IF 21300
1 1 set 1
1/3N set
½N set 1
Water guide jacket, lower part (1 per liner)
IF 21301
1
For PULSE lubricating system
or
Cylinder liner compl. w/o antipolishing ring (without O-rings and joint rings)
IF 21241
1
Gasket, O-rings, steam resist. (set for liner)
IF 21340
1 set
1/3N set
½N set
Upper Insulation bandage, complete
IF 21280
1
Lubricating quill with accumulator
For conventional lubricating system Lubricating quill, complete, with accumutor (6 per cyl. liner)
IF 21355
6
3
Diaphragm for accumulator (1 per accu.)
IF 21368
6
6
6
6
Gasket for lubricating quill (2 per lubr. quill)
IF 21382
12
12
12
12
O-ring (2 per lubr. quill)
IF 21392
12
Progressive block distributor (2 per liner)
IF 21450
1
1
1
For PULSE lubricating system
or
Joint
IF 21389
6
6
6
6
O-ring
IF 21392
12
12
12
12
Non return valve
IF 21362
1
1
1
1
Cylinder cover (fig. K4)
Cylinder cover, complete, without valves Elastic stud for cyl. cover (8 per cyl. cover) Nut for elastic stud (8 per cyl. cover) 2 O-rings (Set for one cyl. cover)
IF 27100 IF 21109 IF 21110 IF 27155
1 4 4
1N sets
2N sets
2N sets
26.14.40 – Issue XII.10 – Rev. 0 K–2 Wärtsilä Switzerland Ltd
Valves for
Marine Installation Manual
K. Spare parts
RT-flex50-D
Item
Spare parts
Code No.
Supply
Additional parts to IACS
per ship
Recommended by WCH for
IACS
Zero to
Zero to
Zero to
10’000
20’000
30’000
hrs
hrs
hrs
N = number of cylinders
Injection valve, complete (2 per cyl.)
IF 27200
2N+2
cylinder covercylinder cover Injection valve
Nozzle body with needle (1 per valve)
IF 27242
1N
Intermediate piece compl., with dowel pins
IF 27204
1N
(fig. K5)
Atomizer (1 per valve)
IF 27244
1N
2N
4N
6N
Small parts (1 set per valve)
IF 27250
1N sets
2N sets
4N sets
6N sets
Dowel pin for atomizer (1 per valve)
IF 27243
1N
2N
4N
6N
Shim rings
IF 27224
1N
2N
3N
Starting air valve
Starting air valve, complete (1 per valve)
IF 27270
2
(fig. K6)
O-ring to IF 27271
IF 27295
1
Joint ring to IF 27271
IF 27289
1
Small parts (Piston rings, O-rings, joint
IF 27350
1 set
2 sets
3 sets
ring) (set for 1 valve)
Exhaust valve
Exhaust valve, complete, with valve drive
IF 27500
2
(1 per cyl. cover) (Applies for ABS, BV,
CRS, DNV, GL, LR, PRS and RMRS)
or
(fig. K7)
Exhaust valve, complete with valve drive
IF 27500
3
(1 per cyl. cover) (Applies for CCS, KR, NK
and RINA)
Valve seat (1 per valve)
IF 27506
1
Valve spindle with rotation wing (1 per val.)
IF 27600
1
Small parts (set for 1 valve)
IF 27665
1 set
2 sets
2 sets
1N sets
Indicator valve
Indicator valve, complete (1 per cyl. cover)
IF 27450
2
(fig. K8)
Indicator valve (cock) (1 per cyl. cover)
IF 27453
¼N
½N
1N
Gasket
IF 27461
¼N
½N
1N
Gasket
IF 27462
¼N
½N
1N
Connecting rod
Bearing cover for top-end bearing,
IF 33120
1
bearings
white metal lined (upper half)
Bearing shell for top-end bearing
IF 33150
1
(lower half)
Bearing shell for bottom-end bearing
IF 33100
1
(upper half)
(fig. K9)
Bearing shell for bottom-end bearing
IF 33101
1
(lower half)
Elastic stud to bottom end-bearing
IF 33065
2
(2 per bearing)
Nut for elastic stud to bottom-end bearing
IF 33066
2
Elastic stud to top-end bearing
IF 33002
4
(4 per bearing)
Nut for elastic stud to top-end bearing
IF 33004
4
Wärtsilä Switzerland Ltd K–3 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
K. Spare parts
Item
Spare parts
Code No.
Supply per ship
Additional parts to IACS Recommended by WCH for
IACS
Zero to 10’000 hrs
Zero to 20’000 hrs
Zero to 30’000 hrs
N = number of cylinders
Piston
Piston, complete, with piston head, skirt, rod, screws, etc. (without piston rings)
IF 34000
1
(fig. K10)
Piston head
IF 34060
1
Piston skirt
IF 34095
1
Piston rings
IF 34422
2
1N
2N
and
IF 34421
6
3N
6N
Small parts (set for 1 piston)
IF 34261
1 set
½N sets
Piston cooling and crosshead lubrication (fig. K11)
Inside pipe Sleeve
IF 36035 IF 36039
1 1
Gland box for piston rod
Gland box, complete, incl. casing in 2-parts
IF 23100
1
Tension springs (set for 1 gland)
and
IF 23111
½N sets
1N sets
(fig. K12)
Tension springs (set for 1 gland)
IF 23112
½N sets
1N sets
Scraper rings (set for 1 gland)
IF 23200
1N sets
2N sets
O-ring and locking plate (set for 1 gland)
IF 23205
1N sets
2N sets
Scavenge air receiver (fig. K13)
Flap
IF 64261
3
3
6
Cylinder lubrication (fig. K14)
For conventional lubricating system Spare parts cylinder lubrication (Cylinder lubricating pump, elements including driving electro motor and gear) For PULSE lubricating system Lubricating pump, complete (Cylinder lubricating syst components, incl. pump block, accu etc.)
IF 96350 or IF 72305
1 set 1
according to manufacturer according to manufacturer
O-rings for bedplate
IF 96375
1 set
Filter insert
IF 96130
1
Differential pressure gauge
IF 96131
1
Set of seals
IF 96132
1 set
26.14.40 – Issue XII.10 – Rev. 0 K–4 Wärtsilä Switzerland Ltd
Marine Installation Manual
K. Spare parts
RT-flex50-D
Item
Spare parts
Code No.
Supply per ship
Additional parts to IACS Recommended by WCH for
IACS
Zero to 10’000 hrs
Zero to 20’000 hrs
Zero to 30’000 hrs
N = number of cylinders
High pressure
With Shperical Sealing Face design
pipe to
Oil piping
IF 84495
1
Rail unit (servo oil)
IF 84496
1
IF 84497
1
Claw
IF 84481
6
Thrust ring
IF 84482
6
O-rings
IF 84491
6
12
IF 84492
6
12
IF 84493
1
2
With Star Tube design
or
Oil piping
IF 84510
1
IF 84511
1
Claw
IF 84512
1
Thrust ring
IF 84481
6
O-rings
IF 84482
6
IF 84491
6
12
IF 84492
6
12
IF 84493
1
2
Hydraulic pipe
With Shperical Sealing Face design
to
Hydraulic pipe, complete
IF 84640
1
exhaust valve
O-rings
IF 84643
2
IF 84644
2
With Star Tube design
or
Hydraulic pipe, complete
IF 84645
1
O-rings
IF 84644
2
IF 84648
2
High pressure
For 5 and 6 cylinder engines (standard)
pipe to
Fuel pressure pipe to rail unit
IF 87510
1
Rail unit (fuel)
(one of each length and shape)
IF 87511
1
Claw
IF 87524
4
Thrust ring
IF 87525
4
O-rings
IF 87540
8
IF 87541
2
or
Wärtsilä Switzerland Ltd K–5 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
K. Spare parts
Item
Spare parts
Code No.
Supply per ship
Additional parts to IACS Recommended by WCH for
IACS
Zero to 10’000 hrs
Zero to 20’000 hrs
Zero to 30’000 hrs
N = number of cylinders
High pressure
For 7 and 8 cylinder engines (standard)
pipe to
Fuel pressure pipe to rail unit
IF 87510
1
Rail unit
(one of each length and shape)
IF 87511
1
(fuel)
Fuel pressure pipe to rail unit
F 87512
1
Claw
IF 87524
6
Thrust ring
IF 87525
6
O-rings
IF 87540
12
IF 87541
3
For 5 and 6 cylinder engines (Star Tube)
or
Fuel pressure pipe to rail unit
IF 87513
1
(one of each length and shape)
IF 87514
1
Claw
IF 87524
4
Thrust ring
IF 87525
4
O-rings
IF 87540
4
IF 87541
2
IF 87550
4
For 7 and 8 cylinder engines (Star Tube)
or
Fuel pressure pipe to rail unit
F 87513
1
(one of each length and shape)
F 87514
1
F 87515
1
6
Claw
IF 87524
Thrust ring
IF 87525
6
O-rings
IF 87540
6
IF 87541
3
IF 87550
6
High pressure
Fuel pressure pipe (standard design)
pipe to
Fuel pressure pipe to injection valve
IF 87335
1
Injection valve
(one of shape)
IF 87340
1
(fuel)
Claw
IF 87345
4
Thrust ring
IF 87346
4
O-rings
IF 87361
4
IF 87362
4
Fuel pressure pipe (Star Tube design)
or
Fuel pressure pipe to injection valve
IF 87336
1
(one of each shape)
IF 87341
1
Claw
IF 87345
4
Thrust ring
IF 87346
4
IF 87360
4
O-rings
IF 87362
4
26.14.40 – Issue XII.10 – Rev. 0 K–6 Wärtsilä Switzerland Ltd
Marine Installation Manual
K. Spare parts
RT-flex50-D
Item
Spare parts
Code No.
Supply per ship
Additional parts to IACS Recommended by WCH for
IACS
Zero to 10’000 hrs
Zero to 20’000 hrs
Zero to 30’000 hrs
N = number of cylinders
Turbocharger
1 set of spare parts (according to turbocharger supplier) Locking device (incl. in turbocharger supply) Blanking device (incl. in WCH standard tool set)
1 set 1 1
Exhaust pipe (fig. K15)
Expansion piece after exhaust valve Expansion piece before turbocharger for MHI MET60MB
IF 81390 IF 65085 or
(1) GL only (1) GL only
1 1
Expansion piece before turbocharger for MHI MET66MB
IF 65088 or
(1) GL only
1
Expansion piece before turbocharger for ABB A100-L
IF 65105 or
(1) GL only
1
Expansion piece before turbocharger for ABB A100-L
IF 65090
(1) GL only
1
Tools
Standard tools as listed in the Maintenance Manual
1 set
Engine control system
Spare parts for engine control system to DENIS-9520 (pressure switches, solenoid valves, valves, O-rings, etc.) Spare parts for alarm system to DENIS-9520 (switches, transmitters, sensors, etc.).
IF 96316 IF 96335
1 set 1 set
1 set 1 set
1 set 1 set
Indicating instruments
Thermometers, pressure gauges. These instruments are fitted on the engine.
IF
1 of each type
1 of each type
1 of each type
Flex system
Electr. modules
Flex control module FCM–20 Power supply 240VAC24VDC/20A Spare parts box complete For PULSE lubricating system ALM-20 with plugs, 1 set of resistors and closing pins
IF 93609 IF 93696 IF 96200 and F 93751
1 1 1
1() 1()
1() 1()
1() 1()
Crank angle sensor unit
Shaft encoder drive (complete) Shaft encoder complett (box) Elastic screw
IF 92260 IF 92265 IF 92231
1 1 1
1()
Lever with parallel pin Compression spring Fixing screw
IF 92241 IF 92243 IF 92251
1 2 1
Wärtsilä Switzerland Ltd K–7 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
K. Spare parts
Item
Spare parts
Code No.
Supply per ship
Additional parts to IACS Recommended by WCH for
IACS
Zero to 10’000 hrs
Zero to 20’000 hrs
Zero to 30’000 hrs
N = number of cylinders
Flex system
Sensors, actuators and valves
Pressure transmitter 250 bar Pressure transmitter 1200 bar
IF 56039 IF 55712
1 1
Rail valve, complete (Box) Proximity sensor PNP 3/2-way solenoid valve f. starting air valve FQ-sensor with connecting element Fuel pump actuator
IF 55754 IF 46282 IF 27398 IF 55762 IF 58010
1 1
2() 1() 1()
2() 1() 1()
2() 1() 1()
Supply unit
Pinion to pump drive servo oil Shaft for servo pump Bearing bush Fuel pump, complete Fuel pump, complete (for NK only) Fuel pump plunger, complete Set of O-rings and rod seal rings Camshaft (with 2 pumps for 5&6 cyl. engines)
IF 55473 IF 55472 IF 55550 IF 55560 IF 55560 IF 55600 IF 55605 IF 55470
1 1 1 1 set
1() 1pair () 1() 1() 1()
or
Camshaft (with 3 pumps for 7&8 cyl. engines) Upper bearing half shell for for camshaft Lower bearing half shell for for camshaft Thrust bearing ring half
IF 55471 IF 55474 IF 55475 IF 55476
1() 1() 1() 1()
Automatic filter
Filter inserts Set of seals
IF 84460 IF 84462
2() 1 set()
Rail unit
Pressure control valve, complete (fuel) Lip seal Injection control unit, complete
IF 55625 IF 55680 IF 55750
1 2 1
or
Injection control unit, complete Lip seal Flexible hose to ICU
IF 55765 IF 55763 IF 56030
1 1 1
(one of each shape and length) Relief valve
IF 56036 IF 55684
1 1
Exhaust valve control unit, complete
IF 56120 and
1
For PULSE lubricating system Servo oil, complete
IF 56180
1
Table K1 List of spare parts 374.760c
26.14.40 – Issue XII.10 – Rev. 0 K–8 Wärtsilä Switzerland Ltd
Marine Installation Manual
K. Spare parts
RT-flex50-D
Examples:
Fuel injection valve, spare parts for 20’000 hours operation for a 6RT-flex50-D.
IACS
Fuel injection valve complete
IF 27200
2 N+2
= (2 6)+2 = 14 pcs
Nozzle body with needle
IF 27242
1 N
= 1 6 = 6 pcs
Atomizer
IF 27244
1 N
= 1 6 = 6 pcs
Small parts
IF 27250
1 N sets = 1 6 = 6 sets
Dowel pin for atomizer
IF 27243
1 N
= 1 6 = 6 pcs
Intermediate piece with dowel pin
IF 27204
1 N
= 1 6 = 6 pcs
Remarks:
Te columns “recommended by WCH“ for 10’000, 20’000, 30’000 hrs for items WECS-9520, Supply unit and Rail unit are not complete yet as same are depending on experience. The numbers stated in columns and marked with () have to be regarded as proposed items by WCH to be kept on board for increased availability.
20’000 hrs
–––––––
–––––––
4 N = 4 6 = 24 pcs
4 N sets = 4 6 = 24 sets
–––––––
–––––––
Wärtsilä Switzerland Ltd K–9 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
K. Spare parts
K3 Illustrations of spare parts
Parts needed to comply with the classification societies requirement of class and enable routine maintenance and repair work to be carried out by the engine-room staff.
IF
11332 IF 11161 IF 11162 IF 11331
012.830/05
Code No.
Description
Mass [kg]
Size [mm]
IF 11331
Main bearing shell, upper half
49
664 x 330 x 212
IF 11332
Main bearing shell, lower half
52
664 x 330 x 212
IF 11161
Elastic stud for main bearing
4.2
M36 x 4 – ∅34 x 606
IF 11162
Round nut to to elastic stud
0.7
M36 x 4 – ∅62 x 42
Fig. K1 Main bearing
26.14.40 – Issue XII.10 – Rev. 0 K–10 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
K. Spare parts
Clockwise rotating engine astern ahead
IF 12241
IF 12241
astern
Counter-clockwise rotating engine
ahead
IF 12242
012.833/05
IF 12242
Code No. Description IF 12241 IF 12242 Thrust pads (depending on direction of rotation) Fig. K2 Thrust bearing pads
Mass [kg] 42 (1 pad)
Size [mm] 380 x 270 x 67 (1 pad)
Wärtsilä Switzerland Ltd K–11 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
K. Spare parts
IF 21300
IF 21280 IF 21301
IF 21241
012.847/05
Code No.
Description
Mass [kg]
Size [mm]
IF 21241
Cylinder liner with antipolishing ring (without joint ring and O-rings)
1934
∅690 x 2343
IF 21280
Insulation bandage, complete
––
––
IF 21300
Water guide jacket, upper part
61
∅157 x 724
IF 21301
Water guide jacket, lower part
197
∅788 x 849
Fig. K3
Cylinder liner
26.14.40 – Issue XII.10 – Rev. 0 K–12 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
K. Spare parts
IF 27100
IF 21110
IF 27155
IF 21109
Code No.
Description
Mass [kg]
Size [mm]
IF 27100
Cylinder cover, complete (without valves)
1097
868 x 868 x 383
IF 21109
Elastic stud for cylinder cover
––
––
IF 21110
Nut for elastic stud
––
––
IF 27155
O-rings
––
––
Fig. K4
Cylinder cover
Wärtsilä Switzerland Ltd K–13 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
K. Spare parts
IF 27200
IF 27243
IF 27242
IF 27244 012.851/05 IF 27224 IF 27224
Code No.
Description
Mass [kg]
Size [mm]
IF 27200
Fuel injection valve, complete (2 per cyl.)
10.5
∅130 x 323
IF 27242
Nozzle body with needle
––
––
IF 27244
Atomizer
––
––
IF 27250
Small parts (1tappet, O-ring etc.)
––
––
IF 27243
Dowel pin for nozzle holder
––
––
IF 27224
Shim rings
––
––
Fig. K5 Fuel injection valve
26.14.40 – Issue XII.10 – Rev. 0 K–14 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
K. Spare parts
IF 27270
012.852/05
Code No. Description IF 27270 Starting air valve, complete IF 27350 Small parts (4 piston rings, 8 O-rings, 1 joint ring) Fig. K6 Starting air valve
Mass [kg] 20 ––
Size [mm] approx. 400 x 170 x 160 ––
Wärtsilä Switzerland Ltd K–15 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
K. Spare parts
IF 27500
IF 27600
012.854/05
IF 27506
Code No.
Description Mass [kg] Size [mm]
IF 27500
Exhaust valve, complete
524
aprox. ∅480 x 1265
IF 27506
Valve seat –– ––
IF 27600
Valve spindle with rotation wings –– ––
Small parts to valve drive
IF 27665
–– ––
(joint rings, piston rings, tap washers, O-rings) Fig. K7 Exhaust valve
26.14.40 – Issue XII.10 – Rev. 0 K–16 Wärtsilä Switzerland Ltd
Marine Installation Manual
K. Spare parts
RT-flex50-D
IF 27450
012.793/05
IF 27453 IF 27461 IF 27462
Code No.
Description
Mass [kg]
Size [mm]
IF 27450
Indicator valve, complete
0.75
∅80 x 150
IF 27453
Indicator valve (cock)
––
––
IF 27461
Gasket
––
––
IF 27462
Gasket
––
––
Fig. K8 Indicator valve (cock)
Wärtsilä Switzerland Ltd K–17 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual RT-flex50-D
K. Spare parts
IF 33120
IF 33002
IF 33004
IF 33150
IF 33065
IF 33066
IF 33100
IF 33101
012.871/05
Code No.
Description Mass [kg]
Size [mm]
IF 33002
Elastic stud for top-end bearing 5.5
M48 – ∅41 x 460
IF 33004
Round nut for elastic stud, top-end bearing 1.4
M48 – ∅83 x 52
IF 33065
Elastic stud for bottom-end bearing 10.5
M56 – ∅47 x 650
IF 33066
Round nut for elastic stud, bottom-end bear.
2.3
M56 – ∅97 x 61
IF 33100
Bearing shell for bottom-end bearing, upper half
23
630 x 315 x 208
IF 33101
Bearing shell for bottom-end bearing, lower half 15.5
630 x 315 x 137
Bearing cover for top-end bearing,
IF 33120
151
727 x 456 x 357
white metal lined (upper half)
IF 33150
Bearing shell for top-end bearing (lower half)
39
557 x 456 x 278
Fig. K9 Connecting rod bearings
26.14.40 – Issue XII.10 – Rev. 0 K–18 Wärtsilä Switzerland Ltd
RT-flex50-D Marine Installation Manual
K. Spare parts
IF 34421
IF 34422
IF 34000
012.873/05
Code No.
Description
Mass [kg]
Size [mm]
Piston, complete with head, skirt, piston rod, studs and
IF 34000
922
∅500 x 2954
nuts (without piston rings)
IF 34421
Piston rings
2.9
∅500 x 15
IF 34422
Piston rings
2.9
∅500 x 15
Small parts
IF 34261
––
––
(O-rings, locking plates, tap washers)
Fig. K10 Piston
Wärtsilä Switzerland Ltd K–19 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
K. Spare parts
IF
36035 IF 36039 012.874/05
Code No.
Description
Mass [kg]
Size [mm]
IF 36035
Inside pipe
18
∅56 x 2209
IF 36039
Sleeve
4.5
∅108 x 115
Fig. K11 Piston cooling and crosshead lubricating linkage
26.14.40 – Issue XII.10 – Rev. 0 K–20 Wärtsilä Switzerland Ltd
Marine Installation Manual K. Spare parts RT-flex50-D IF 23100 012.849/05 IF 23111 IF 23112
Code No.
Description
Mass [kg]
Size [mm]
IF 23100
Piston-rod gland box, complete incl. casing in 2 parts
88
∅496 x 271
IF 23111
Tension springs (set for 1 gland)
––
––
IF 23112
Tension springs (set for 1 gland)
––
––
IF 23200
Oil scraper rings and gaskets (set for 1 gland)
––
––
IF 23205
O-rings (set for 1 gland)
––
––
Fig. K12 Gland box piston rod
Wärtsilä Switzerland Ltd K–21 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
K. Spare parts
IF 64261
F10.5012
Code No.
Description
Mass [kg]
Size [mm]
IF 64261
Flap
1
318 x 191
Fig. K13 Flap for scavenging air receiver
26.14.40 – Issue XII.10 – Rev. 0 K–22 Wärtsilä Switzerland Ltd
Marine Installation Manual
K. Spare parts
RT-flex50-D ex 354.694a IF 96350
Code No.
Description
Mass [kg]
Size [mm]
IF 96350
Spare parts for cylinder lubrication pump (incl. driving electro motor and gear)
105
approx. 600 x 500 x 210
Fig. K14 Cylinder lubricating pump and drive (conventional lubricating system)
Wärtsilä Switzerland Ltd K–23 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
K. Spare parts
IF 81390
IF 65090
F10.5014
Code No.
Description
Mass [kg]
Size [mm]
IF 81390
Expansion piece after exhaust valve
35
∅370 x 252
IF 65088 IF 65105 IF 65090
Expansion piece before turbocharger
depends on type of turbocharger
Fig. K15 Expansion piece of exhaust system
26.14.40 – Issue XII.10 – Rev. 0 K–24 Wärtsilä Switzerland Ltd
Marine Installation Manual
K. Spare parts
RT-flex50-D
K4 Storage on board
K4.1 Protection against corrosion
It is essential that spare parts are previously preserved against corrosion by the manufacturer or provider to be protected during shipping. Before storage on board, the spare parts have to be checked for adequate preservation.
To achieve a long-term protection, spare parts and components with an insufficient preservation have to be treated as follows:
•
Large components should be treated with Valvoline Tectyl 506 or a suitable equivalent.
•
Smaller components, with the exception of electronic equipment, can be wrapped in a corrosive-protective paper i.e., Vapour Phase Inhibitor.
ˇ Note: When using corrosive-protective paper, care must be taken not to tear the paper as the protective qualities of the paper will be lost.
•
White metal and bearing surfaces should be protected with ‘Emballit’ alum or a suitable equivalent.
•
Electronic components should be vacuum packed in ‘Alfo’ sheets using 1000 g of a suitable drying agent for each cubic metre content.
K4.2 Storage and security
Examples of ways to secure and protect spare parts safely and allow ease of access by the en-gine-room staff are given below (see also figures K16 to K19).
•
The size and weight of each component is to be noted prior to storage, to ensure that the safest and most space-efficient method is adopted.
•
All components are to be mounted within easy access of the engine, ensuring machinery space walkways are kept clear.
•
Large components are to be mounted below suitable overhead lifting gear.
•
The weights of large components are to be painted on, or, adjacent to the component.
•
Suitable lifting eyes and shackles are to be provided.
•
All components must be firmly secured to prevent any movement.
•
Metal to metal contact is to be avoided during storage of any component.
•
All open ports, adapters, pipes, etc., are to be sealed to prevent the ingress of foreign particles.
•
Any provisions for mounting spare parts on the engine should be fully utilised.
K4.2.1 Turbocharger spare parts
Turbocharger spare parts are to be suitably protected against corrosion and contained within their own spare parts box.
Bearing assemblies are supplied packed in sealed metal containers to protect them from the environment. Bearing assemblies must only be removed from metal containers when they are actually required.
All turbocharger spare parts used, are to be replaced, to ensure the spares kit is complete.
Wärtsilä Switzerland Ltd K–25 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
K. Spare parts
K4.2.2 Secured spare parts
F10.2800 F10.2801
Fig. K16 Securing spare piston and rod Fig. K17 Securing spare exhaust valves
26.14.40 – Issue XII.10 – Rev. 0 K–26 Wärtsilä Switzerland Ltd
Marine Installation Manual
K. Spare parts
RT-flex50-D
F10.2802 F10.2803
Fig. K18 Securing spare exhaust valve cages without Fig. K19 Securing spare cylinder liner hydraulic actuator
Wärtsilä Switzerland Ltd K–27 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
K. Spare parts
26.14.40 – Issue XII.10 – Rev. 0 K–28 Wärtsilä Switzerland Ltd
Marine Installation Manual
L. Engine dispatch and installation
RT-flex50-D
L1 Dismantling pattern
Engines are transported as complete or sub-assemblies and protected against corrosion by rust preventing oils, vapour phase inhibitor papers (VPI) and wooden crates lined with jute reinforced bituminous paper.
L1.1 Treatment against corrosion
Engine interior
For engines to be transported as complete assemblies we recommend for internal surfaces the use of rust preventing oils as listed below. It is not necessary to remove them before the engine goes into operation.
•
Valvoline Tectyl 873
•
Shell Ensis Engine Oil SAE 40/30
•
Exxon Rust-Ban 623
•
Mobil Mobilarma 524
•
Caltex / Chevron Preservative Oil SAE 30.
For the transport of complete engines, dehumidifiers are to be enclosed in the scavenge space and the crankcase.
Engine exterior
One coat of Valvoline Tectyl 506 or similar product to be applied to all machined parts not protected by paint. It is to guarantee protection for at least six months from the effects of weather and remain intact until shortly before the engine goes into operation.
Bearing and cylinder lubricating oil systems
On completion of the engine shop trial the main and cylinder lubricating oil systems are to be drained completely and refilled with Valvoline Tectyl 873 or similar product and circulated for at least an hour with the engine being slowly rotated by the turning gear. At the same time, the cylinder lubricators must be rotated as well.
After that, the crossheads and main bearings are to be lubricated, please refer to the maintenance manual, group 3 ̀̀̀̀̀̀̀̀Connecting rod and connecting rod bearing’.
Spraycoating with rust preventing oil
Internal parts not sufficiently covered by the rust preventing oil during circulation are to be spray coated. These include the fuel pump pushrods, springs, plungers, rollers and cams, piston rods above, inside and below the stuffing box, scavenge valves and dry parts of the cylinder liners. The liners can be accessed and sprayed through the scavenge ports.
Pipework
All open ended pipework is to be sealed by plugs or blank flanges to eliminate ingress of foreign bodies and circulation of air.
Turbocharger in place
Drain the turbine and compressor end oil and spraycoat the bearings while turning the rotor by hand. Fit blank flanges to the air inlet and gas outlet sides.
Cylinder cooling water system
During engine shop trials, usually a cooling water treated with corrosion inhibitors is used. Corrosion-protective inhibitors are only effective as long as the correctly treated water is in contact with the metal surface to be protected. Once the cooling water has been drained off, further treatment against corrosive attack is absolutely essential. Therefore a suitable corrosion protection has to be carried out by applying rust preventing oil as mentioned in section L1.1 under ‘Engine interior’
Wärtsilä Switzerland Ltd L–1 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
L. Engine dispatch and installation
An alternative may be the admixture of a so-called ‘soluble oil’ to the cooling water to protect the engine cooling water system. The concentration must be maintained at levels between 0.5 to 0.8 per cent by volume. On completion of the trials and prior to shipping, the circulating cooling water through the engine cooling water system is to be maintained at a pH value between 7 and 9 and the soluble oil inhibitor level increased to 1 per cent by volume. The cylinder temperature is not to exceed 90°C and circulation is to continue for at least three hours allowing time for the soluble oil inhibitor to coat the internal surfaces.
We recommend using the following soluble oil inhibitors:
•
BP Fedaro
•
Castrol Solvex WT3
•
Chevron Soluble Oil T1
•
Exxon / Esso Kutwell 40
•
Mobil Mobilmet 120
•
Shell Dromus BX
•
Texaco Soluble Oil C, CX.
For long time conservation of engines please ask for the specification from the engine manufacturer or Wärtsilä Switzerland Ltd.
L1.2 Engine dismantling
Engines transported as sub-assemblies are to be systematically disassembled and cleaned using dry cloths. Each item is to be clearly identified with ‘paint ball’ pen, similar indelible marker ink, or figure and letter stamps and protected from damage by careful crating and corrosion protected by rust preventing oils or paper.
It is very important that bearings and running gear are clearly marked cylinder by cylinder to ensure correct reassembly and eliminate the possibility of parts from one cylinder unit being fitted to another by mistake. Refer to section B2 of this manual for details of the engine numbering.
Use a paint brush to apply highly viscous rust preventing oil to the piston and connecting rods, crosshead guides, gear wheels, camshaft and rollers. Air powered spray guns to be used only if the air is absolutely free of water.
Crankshaft and crosshead pins are to be protected with an anti-corrosive coating of Tectyl 506 or similar product.
26.14.40 – Issue XII.10 – Rev. 0 L–2 Wärtsilä Switzerland Ltd
Marine Installation Manual
L. Engine dispatch and installation
RT-flex50-D
L1.3 Engine dispatch L1.3.1 Lifting an engine
This section is being prepared.
Wärtsilä Switzerland Ltd L–3 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual L. Engine dispatch and installation RT-flex50-D
L1.3.2 Engine sub-assemblies
C
D
E
Separate parts
– Tie rods
– Pistons & rodsAB – Stuffing boxes
364.355
– Connecting rods – etc.
Fig. L20 Engine sub-assemblies (proposal)
Sub-assemblies (weights in tonnes)
5 cyl
6 cyl
7 cyl
8 cyl
A Bedplate, crankshaft, flywheel etc.
B Column, crosshead, connecting rod etc.
C Cylinder block, liner, injection pump etc.
D Receiver, SAC, turbocharger, blowers etc.
E Pistons, connecting rods, tie rods, etc.
Table L2 Approximate weights of sub-assemblies
26.14.40 – Issue XII.10 – Rev. 0 L–4 Wärtsilä Switzerland Ltd
Marine Installation Manual
L. Engine dispatch and installation
RT-flex50-D
L2 Engine installation on board
The alignment and chocking of the engine should be carried out in accordance with our recommendations and is subject to test and inspection by the relevant classification society. Each stage of the engine mounting is to be checked by qualified personnel and measurements cross-checked with the design figures. The responsible parties (e. g. shipyard) are to advise the representative of the engine builder or Wärtsilä Switzerland Ltd directly in case of any discrepancies. Engines may be installed as complete units or assembled from sub-assemblies in the vessel, which may be afloat, in dry dock, or on the slipway. After the engine re-assembly is completed, the engine alignment can be done with either jacking screws or wedges.
L2.1 Removing rust preventing oils
Rust preventing oils applied to the internal parts of an assembled engine do not contain thickening agents of wax or bitumen. These oils have similar properties as the engine lubricating oils, will wash off easily and mix without causing harm to the engine or its systems. Rust preventing oils of the wax-type applied to exposed surfaces of the engine components do contain thickening agents of wax or bitumen forming an anti-corrosion coating when applied, which has to be washed off using a proprietary ‘Cold Cleaner’. It is not sufficient to use gas oil, kerosene or white spirit on its own as solvents; they are to be mixed with 2 to 3 parts of a ‘Cold Cleaner’ such as ‘Magnusol’, ‘Agitol’ or ‘Emultan’.
L2.2 Installation and assembly of subassemblies
When the engine seating has been approved, the bedplate is lowered onto blocks placed between the chocking points. The thickness of the blocks depends on the final alignment of the engine.
Engine bedplates comprise fabricated sections with drilled holes to allow the passing of the hold-ing-down bolts and tapped holes for the jacking screws for engine alignment.
Proceed with preliminary alignment of bedplate to position the engine coupling flange to the intermediate shaft coupling flange. Ensure that the gap between both flanges is close to the calculated figures and that both flanges are exactly parallel on the horizontal plane (max. deviation 0.05 mm). In the vertical plane, the engine coupling flange is to be set 0.4 to 0.6 mm higher than the calculated figures, because less effort is required to lower the engine than to raise it for alignment. Place bearing caps in position, install turning gear and check that crankshaft deflections are as recorded on the “Engine Assembly Records”.
To check bedplate level in longitudinal and diagonal direction a taut-wire measuring device is available on request. Compare the readings with those recorded at the works. Optical devices, lasers or water pots can also be used.
All final dimensions are to be witnessed by the representatives of the engine builder and the classification society. They are to be recorded on appropriate log sheets. Crankshaft deflections at this stage are to correspond with the values recorded at works. Secure temporarily the bedplate against unexpected movement. Continue engine assembly by mounting the columns, cylinder blocks, running gears and scavenge air receiver but ensure that the bearing caps are loose before tensioning the tie rods. Make periodic checks of the crankshaft deflections to observe and correct any possible engine distortions. Careful adjustments of the wedges or of the jacking screws are necessary to re-establish the preliminary alignment setting. Once the engine assembly is completed, the final alignment is carried out with the vessel afloat, according to section L3.
Wärtsilä Switzerland Ltd L–5 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual L. Engine dispatch and installation RT-flex50-D
L2.3 Installing a complete engine
In the event that the engine is shipped in part deliveries and assembled at the shipyard prior to installation in the vessel, the shipyard is to undertake the assembly work in accordance with the requirements of a representative of the engine builder and the classification society. The engine mounting is to be carried out systematically and measurement readings taken and recorded on appropriate log sheets, and to be compared for correctness with the data of the ‘ “Engine Assembly Records”, completed after test run in the works of manufacturer. Strict attention is to be paid to the removal of anticorrosion coatings and the subsequent application of rust preventing oil where required.
For lifting details of the engine refer to section. L1.3.
The engine is to be lowered onto blocks placed between the chocking points. The alignment tools are to be clean and ready for use. Set the blocks so that the engine is slightly higher than the final position, because less effort is required to lower the engine than to raise it for alignment.
For movements in the horizontal plane, both in lateral or longitudinal directions, the shipyard is to construct appropriate anchor points for the use of hydraulic jacks. Such movements have to be carried out with great care to avoid stresses and distortions to the bedplate. Regular crankshaft deflection readings have to be taken to observe the effects and any noticed deviations have to be rectified immediately.
L2.4 Installing an engine from assembled sub-assemblies
Sub-assemblies of the engine may be assembled ashore prior to installation in the ship. One such assembly may comprise bedplate, main and thrust bearings, crankshaft, turning gear, and flywheel. The placing on blocks and alignment to shafting is analogue to the description in section L2.2.
L2.5 Engine installation with ship on slipway
Installing complete or partially assembled engines into ships under construction on an inclined slip-way is possible when careful attention is paid to the following:
1.
Consider the ship’s inclination when lifting and lowering the engine or large engine parts into the ship.
2.
Tie rods to be centred and exactly perpendicular to the bedplate before tightening.
3.
Fit temporary side, fore and aft stoppers to prevent the engine moving during launching.
4.
Attach additional temporary stays at the upper platform level to steady the engine during launching.
26.14.40 – Issue XII.10 – Rev. 0 L–6 Wärtsilä Switzerland Ltd
Marine Installation Manual
L. Engine dispatch and installation
RT-flex50-D
L3 Shafting alignment
This section is being prpared andcwill be added as soon as possible.
Wärtsilä Switzerland Ltd L–7 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
L. Engine dispatch and installation
L4 Official shop trial
The official shop trial, carried out at the engine builder’s factory, enables the purchaser and classification society to witness engine performance over full load range when driving a dynamometer. Technical data relating to the engine performance together with mechanical settings, running clearances and alignment dimensions are recorded and used as basis for all future re-assembly work, for check measurements during later engine inspections and may facilitate the prompt and correct identification of engine disturbances.
The technical data is to be recorded on “Engine Assembly Records” (Record sheets) and sent by the licensee to WCH.
26.14.40 – Issue XII.10 – Rev. 0 L–8 Wärtsilä Switzerland Ltd
Marine Installation Manual
M. Appendix
RT-flex50-D
M1 SI dimensions for internal combustion engines
Symbol
Definition
SI-Units
Other units
I,L
Length
m, mm, μm
A
Area
m2, mm2, cm2
V
Volume
m3, dm3, I, cm3
m
Mass
kg, t, g
ρ
Density
kg/m3, g/cm3, kg/dm3
Z, W
Section modulus
m3
Ia, Ip
Second moment of area
m4
I, J
Moment of inertia (radius)
kgm2
α, β, γ, δ, ϕ
Angle
rad, °
t
Time
s, d, h, min
f, v
Frequency
Hz, 1/s
v, c, w, u
Velocity
m/s, km/h
Kn
N, n
Rotational frequency
1/s, 1/min
rpm
a
Acceleration
m/s2
ω
Angular velocity
rad/s
α
Angular acceleration
rad/s2
qm
Mass flow rate
kg/s
qv
Volume flow rate
m3/s
p
Momentum
Nm
L
Angular momentum
Nsm
F
Force
N, MN, kN
p
Pressure
N/m2, bar, mbar, kPa
1 bar = 100 kPa, 100 mmWG = 1 kPa
σ, τ
Stress
N/m2, N/mm2
E
Modulus of elasticity
N/m2, N/mm2
W, E, A, Q
Energy, work, quantity of heat
J, MJ, kJ, kWh
P
Power
W, kW, MW
M, T
Torque moment of force
Nm
η
Dynamic viscosity
Ns/m2
ν
Kinematic viscosity
m2/s
cSt, RW1
γ, σ
Surface tension
N/m
T, Θ, t, θ
Temperature
K, °C
T, Θ, ...
Temperature interval
K, °C
α
Linear expansion coefficient
1/K
C, S
Heat capacity, entropy
J/K
c
Specific heat capacity
J/(kgK)
λ
Thermal conductivity
W/(mK)
K
Coefficient of heat transfer
W/(m2K)
e
Net calorific value
J/kg, J/m3
L(LIN)TOT
Total LIN noise pressure level
dB
L(A)TOT
Total A noise pressure level
dB
LOKT
Average spatial noise level over octave band
dB
U
Voltage
V
I
Current
A
BSFC
Brake specific fuel consumption
kg/J, kg/(kWh), g/(kWh)
Wärtsilä Switzerland Ltd M–1 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
M. Appendix
M2
Approximate conversion factors
Length
Force
1 in
=
25.4 mm
1 lbf (pound force)
=
4.45 N
1 ft
= 12 in
=
304.8 mm
1 yd
= 3 feet
=
914.4 mm
Pressure
1 statute mile
= 1760 yds
=
1609.3 m
1 psi (lb/sq in)
=
6.899 kPa
1 nautical mile
= 6080 feet
=
1853 m
(0.0689 bar)
Mass
1 oz
=
0.0283 kg
Velocity
1 lb
= 16 oz
=
0.4536 kg
1 mph
=
1.609 km/h
1 long ton
=
1016.1 kg
1 knot
=
1.853 km/h
1 short ton
=
907.2 kg
1 tonne
=
1000 kg
Acceleration
1 mphps
=
0.447 m/s2
Area
1 in2
=
6.45 cm2
Temperature
1 ft2
=
929 cm2
1 °C
=
0.55 (°F -32)
1 yd2
=
0.836 m2
1 acre
=
4047 m2
Energy
1 sq mile (of land) 640 acres
=
2.59 km2
1 BTU
=
1.06 kJ
1 kcal
=
4.186 kJ
Volume
1 in3
=
16.4 cm3
1 ft3
=
0.0283 m3
Power
1 yd3
=
0.7645 m3
1 kW
=
1.36 bhp
1 kW
=
860 kcal/h
Volume (fluids)
1 Imp. pint
=
0.568 l
1 U.S. pint
=
0.473 l
1 Imp. quart
=
1.136 l
1 U.S. quart
=
0.946 l
1 Imp. gal
=
4.546 l
1 U.S. gal
=
3.785 l
1 Imp. barrel
= 36 Imp. gal
=
163.66 l
1 barrel petroleum = 42 US. gal
=
158.98 l
26.14.40 – Issue XII.10 – Rev. 0 M–2 Wärtsilä Switzerland Ltd
Marine Installation Manual
M. Appendix
RT-flex50-D
M3 Reference to other Wärtsilä Ltd publications
For further publications please visit our homepage http:/www.wartsila.com or contact your local Wärtsilä representative or contact
Wärtsilä Switzerland Ltd PO Box 414 CH-8401 Winterthur, Switzerland
Telephone: +41 52 262 4922 Telefax: +41 52 52 262 0707
Wärtsilä Switzerland Ltd M–3 26.14.40 – Issue XII.10 – Rev. 0
Marine Installation Manual
RT-flex50-D
M. Appendix
26.14.40 – Issue XII.10 – Rev. 0 M–4 Wärtsilä Switzerland Ltd
We use cookies to improve your experience. By continuing to use our site, you accept our Cookies, Privacy Policy,Terms and Conditions. Close X